Advertisement

Marine Biology

, 165:24 | Cite as

Nematode biomass and morphometric attributes as descriptors during a major Zostera noltii collapse

  • Patrick Materatski
  • Rui Ribeiro
  • Matilde Moreira-Santos
  • José Paulo Sousa
  • Helena Adão
Original paper

Abstract

Benthic nematodes are recognized as suitable organisms to provide valuable information on the potential ecological effects of natural and anthropogenic disturbances in aquatic ecosystems. The biomass and morphometric attributes of nematodes (body length, width, and length/width) collected in the Mira estuary (SW Portugal) were analysed before the collapse and during the natural recovery process of the Zostera noltii bed. In addition, their relationship with community characteristics and environmental variables was studied. Moreover, biomass and morphometric attributes were investigated for their potential use as a complementary tool to the classical descriptor “density” (from which several other descriptors are derived) when studying nematodes as biological indicators. Nematode biomass and morphometric attributes proved to be valuable as correlate with the environmental changes associated with the Z. noltii collapse. High values of nematode biomass, length, width, and length/width ratio were observed during the early recovery process of Z. noltii, contrasting with nematode densities, which showed consistently higher values before the collapse. These findings suggest that biomass and morphometric attributes indicate a functional adaptation of nematode communities to the new environmental conditions in the early recovery process of Z. noltii. Therefore, these traits may be used to provide complementary information to standing stocks of nematode assemblages so as to assess ecological changes over spatial and temporal scales in marine ecosystems, particularly within seagrass bed habitats.

Notes

Acknowledgements

This work was supported by the Fundação para a Ciência e Tecnologia (FCT), through the research projects CoolNematode (FCT; EXPL/MAR-EST0553/2013) and ProMira (PROMAR; 31-03-02-FEP-006) and by the strategic project UID/MAR/04292/2013. P. Materatski and M. Moreira-Santos are grateful to the Portuguese Foundation for Science and Technology (FCT) for a doctoral (ref. SFRH/BD/65915/2009) and postdoctoral fellowship (ref. SFRH/BPD/99800/2014), both funded by Programa Operacional Potencial Humano of QREN Portugal (2007–2013 and 2014–2020, respectively) and by the Portuguese budget through the Ministry of Education and Science.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Adão H (2004) Dynamics of meiofauna communities in association with Zostera noltii seagrass beds in the Mira estuary (SW Portugal)Google Scholar
  2. Almeida A (1994) Macrofauna acompanhante de zosteráceas. Importância na conservação do meio marinho. Museu BocageGoogle Scholar
  3. Alongi D (1987) Intertidal zonation and seasonality of meiobenthos in tropical mangrove estuaries. Mar Biol 95:447–458CrossRefGoogle Scholar
  4. Alves A, Adao H, Ferrero T, Marques J, Costa M, Patricio J (2013) Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: the use of nematodes in ecological quality assessment. Ecol Indic 24:462–475.  https://doi.org/10.1016/j.ecolind.2012.07.013 CrossRefGoogle Scholar
  5. Alves A, Veríssimo H, Costa M, Marques J (2014) Taxonomic resolution and Biological Traits Analysis (BTA) approaches in estuarine free-living nematodes. Estuar Coast Shelf Sci 138:69–78CrossRefGoogle Scholar
  6. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA A + for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  7. Andrade F (1986) O estuário do Mira: caracterização geral e análise quantitativa da estrutura dos macropovoamentos bentónicos, Lisbon, PortugalGoogle Scholar
  8. Andrassy I (1956) The determination of volume and weight of nematodes. Acta Zool (Hungarian Academy of Science) 2:1–15Google Scholar
  9. Boström C, Bonsdorff E (1997) Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. J Sea Res 37:153–166CrossRefGoogle Scholar
  10. Boström C, Jackson E, Simenstad C (2006) Seagrass landscapes and their effects on associated fauna: a review. Estuar Coast Shelf Sci 68:383–403CrossRefGoogle Scholar
  11. Chalcraft D, Resetarits W (2003) Mapping functional similarity of predators on the basis of trait similarities. Am Nat 162:390–402CrossRefGoogle Scholar
  12. Clarke K, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219CrossRefGoogle Scholar
  13. Clarke K, Green R (1988) Statistical design and analysis for a biological effects study. Mar Ecol Prog Ser 46:213–226CrossRefGoogle Scholar
  14. Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Primer-E Ltd, PlymouthGoogle Scholar
  15. Costa J (2004) A biologia do xarroco, Halobatrachus didactylus (Bloch and Schneider, 1801), e o seu papel na estruturação e funcionamento das comunidades em que se insere; referência especial à população do estuário do MiraGoogle Scholar
  16. Costa MJ, Santos CI, Costa HN (2002) Comparative analysis of a temperate and a tropical seagrass bed fish assemblages in two estuarine systems: the Mira estuary (Portugal) and the Mussulo lagoon (Angola). Cah Biol Mar 43:73–81Google Scholar
  17. Coull B (1988) The ecology of marine meiofauna. In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institute Press, WashingtonGoogle Scholar
  18. Coull B (1999) Role of meiofauna in estuarine soft-bottom habitats. Aust J Ecol 24:327–343CrossRefGoogle Scholar
  19. Coull B, Chandler G (1992) Pollution and meiofauna: field, laboratory and mesocosm studies. Oceanogr Mar Biol 30:191–271Google Scholar
  20. Cunha A, Assis J, Serrão E (2013) Seagrass in Portugal: a most endangered marine habitat. Aquat Bot 104:193–203CrossRefGoogle Scholar
  21. Danovaro R, Gambi C, Dell’Anno A, Corinaidesi C, Fraschetti S, Vanreusel A, Vincx M, Gooday A (2008) Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol 18:1–8CrossRefGoogle Scholar
  22. Duarte C, Borum J, Short F, Walker D (2008) Seagrass ecosystem: their global status and prospects. In: Polunin NVC (ed) Aquatic ecosystems: trend and global prospects. Cambridge University Press, Cambridge, pp 281–294CrossRefGoogle Scholar
  23. Edgar GJ, Shaw C, Watsona GF, Hammond L (1994) Comparisons of species richness, size structure and productions of benthos in vegetated and unvegetated habitats in Western Port, Victoria. J Exp Mar Bio Ecol 176:201–226CrossRefGoogle Scholar
  24. Fisher R, Sheaves M (2003) Community structure and spatial variability of marine nematodes in tropical Australian pioneer seagrass meadows. Hydrobiologia 495:143–158CrossRefGoogle Scholar
  25. Fleeger J, Grippo M, Pastorick S (2011) What is the relative importance of sediment granulometry and vertical gradients to nematode morphometrics? Mar Biol Res 7:122–134CrossRefGoogle Scholar
  26. Fonseca G, Hutchings P, Gallucci F (2011) Meiobenthic communities of seagrass beds (Zostera capricorni) and unvegetated sediments along the coast of New South Wales, Australia. Estuar Coast Shelf Sci 91:69–77CrossRefGoogle Scholar
  27. Gallucci F, Steyaert M, Moens T (2005) Can field distributions of marine predacious nematodes be explained by sediment constraints on their foraging success? Mar Ecol Prog Ser 304:167–178CrossRefGoogle Scholar
  28. Gerlach S (1953) Die Biozonotische gliederung der Nematodenfauna an den Deutschen Kusten. Zeitschrift für Morfologie und okologie der Tiere 41:411–512CrossRefGoogle Scholar
  29. Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments, 2nd edn. Springer, BerlinGoogle Scholar
  30. Green E, Short F (2003) World atlas of seagrasses. California University Press, CaliforniaGoogle Scholar
  31. Guerrini A, Colangelo M, Ceccherelli V (1998) Recolonization patterns of meiobenthic communities in brackish vegetated and unvegetated habitats after induced hypoxia/anoxia. Hydrobiologia 375(376):73–87CrossRefGoogle Scholar
  32. Guilini K, Bezerra T, Eisendle-Flöckner U, Deprez T, Fonseca G, Holovachov O, Leduc D, Miljutin D, Moens T, Sharma J, Smol N, Tchesunov A, Mokievsky V, Vanaverbeke J, Vanreusel A, Venekey V, Vincx M (2016) NeMys: world database of free-living marine nematodesGoogle Scholar
  33. Heip C, Vincx M, Vranken G (1985) The ecology of free-living nematodes. Oceanogr Mar Biol 23:399–489Google Scholar
  34. Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  35. Hendelberg M, Jensen P (1993) Vertical distribution of the nematode fauna in coastal sediment influenced by seasonal hypoxia in the bottom water. Ophelia 37:83–94CrossRefGoogle Scholar
  36. Hirst J, Attrill M (2008) Small is beautiful: an inverted view of habitat fragmentation in seagrass beds. Estuar Coast Shelf Sci 78:811–818CrossRefGoogle Scholar
  37. Hughes A, Williams S, Duarte C, Heck K, Waycott M (2009) Associations of concern: declining seagrasses and threatened dependent species. Front Ecol Environ 7:242–246CrossRefGoogle Scholar
  38. Jensen P (1984) Ecology of benthic and epiphytic nematodes in brackish waters. Hydrobiologia 108:201–217CrossRefGoogle Scholar
  39. Leduc D, Probert P, Nodder S (2010) Influence of mesh size and core penetration on estimates of deep-sea nematode abundance, biomass, and diversity. Deep Sea Res Part 1 Oceanogr Res Pap 57:1354–1362CrossRefGoogle Scholar
  40. Losi V, Moreno M, Gaozza L, Vezzulli L, Fabiano M, Alberteli G (2013) Nematode biomass and allometric attributes as indicators of environmental quality in a Mediterranean harbour (Ligurian Sea, Italy). Ecol Indic 30:80–89CrossRefGoogle Scholar
  41. Materatski P, Vafeiadou A, Ribeiro R, Moens T, Adão H (2015) A comparative analysis of benthic nematode assemblages from Zostera noltii beds before and after a major vegetation colapse. Estuar Coast Shelf Sci 167:256–268CrossRefGoogle Scholar
  42. Materatski P, Vafeiadou A-M, Moens T, Adão H (2016) Structural and functional composition of benthic nematode assemblages during a natural recovery process of Zostera noltii seagrass beds. Estuar Coast 39:1–13.  https://doi.org/10.1007/s12237-016-0086-0 CrossRefGoogle Scholar
  43. Metodik Limnologisk (1992) Københavns University, Ferksvandsbiologisk Laboratorium, Akademisk Forlag, CopenhagenGoogle Scholar
  44. Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Assoc UK 77:211–227CrossRefGoogle Scholar
  45. Moreno M, Ferrero T, Gallizia I, Vezzulli L, Albertelli G, Fabiano M (2008) An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuar Coast Shelf Sci 77:565–576CrossRefGoogle Scholar
  46. Ndaro S, Olafsson E (1999) Soft-bottom fauna with emphasis on nematode assemblage structure in a tropical intertidal lagoon in Zanzibar, eastern Africa: I. Spatial variability. Hydrobiologia 405:133–148CrossRefGoogle Scholar
  47. Norling K, Rosenberg R, Hulth S, Grémare A, Bonsdorff E (2007) Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Mar Ecol Prog Ser 332:11–23CrossRefGoogle Scholar
  48. Orth R, Carruthers T, Dennison W, Duarte C, Fourqurean J, Heck K, Hughes A, Kendrick G, Kenworthy W, Olyarnik S, Short F, Waycott M, Williams S (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996CrossRefGoogle Scholar
  49. Parsons T, Maita Y, Lally C (1985) Pigments a manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, pp 101–104Google Scholar
  50. Platt H, Warwick R (1983) Free-living marine nematodes. Part I. British Enoplids. Cambridge University Press, CambridgeGoogle Scholar
  51. Platt H, Warwick R (1988) Free living marine nematodes. Part II: British chromadorids. Pictorial key to world genera and notes for the identification of British species, LeidenGoogle Scholar
  52. Ratsimbazafy R, Boucher G, Dauvin J (1994) Mesures indirectes de la biomasse des nématodes du meiobenthos subtidal de la Manche. Cah Biol Mar 35: 511–523Google Scholar
  53. Rede Natura (2000). http://www.icnf.pt/portal/pn/biodiversidade/rn2000/rn-pt. Accessed 23 Jan 2016
  54. Romeyn K, Bouwman L (1983) Food selection and consumption by estuarine nematodes. Aquat Ecol 17:103–109Google Scholar
  55. Schratzberger M, Warr K, Rogers S (2007) Functional diversity of nematode communities in the southwestern North Sea. Mar Environ Res 63:368–389CrossRefGoogle Scholar
  56. Schratzberger M, Maxwell T, Warr K, Ellis J, Rogers S (2008) Spatial variability of infaunal nematode and polychaete assemblages in two muddy subtidal habitats. Mar Biol 153:621–642CrossRefGoogle Scholar
  57. Schwinghamer P (1983) Generating ecological hypothesis from biomass spectra using causal analysis: a benthic example. Mar Ecol Prog Ser 13:151–166CrossRefGoogle Scholar
  58. Sheppard C (2006) The muddle of “Biodiversity”. Mar Pollut Bull 52:123–124Google Scholar
  59. Short F, Polidoro B, Livingstone S, Carpenter K, Bandeira S, Bujang J, Calumpong H, Carruthers T, Coles R, Dennison W, Erftemeijer P, Fortes M, Freeman A, Jagtap T, Kamal A, Kendrick G, Kenworthy W, La Nafie Y, Nasution I, Orth R, Prathep A, Sanciangco J, Van Tussenbroek B, Vergara S, Waycott M, Zieman J (2011) Extinction risk assessment of the world’s seagrass species. Biol Conserv 144:1961–1971CrossRefGoogle Scholar
  60. Smol N, Willems K, Govaere JCR, Sandee A (1994) Composition, distribution, biomass of meiobenthos in the Oosterschelde estuary (SW Netherlands). Hydrobiologia 282:197–217CrossRefGoogle Scholar
  61. Soetaert K, Vincx M, Wittoeck J, Tulkens M (1995) Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311:185–206CrossRefGoogle Scholar
  62. Soetaert K, Muthumbi A, Heip C (2002) Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Mar Ecol Prog Ser 242:179–193CrossRefGoogle Scholar
  63. Soetaert K, Franco M, Lampadariou N, Muthumbi A, Steyaert M, Vandepitte L, Vanden Berghe E, Vanaverbeke J (2009) Factors affecting nematode biomass, length and width from the shelf to the deep sea. Mar Ecol Prog Ser 392:123–132CrossRefGoogle Scholar
  64. Somerfield P, Gee J, Warwick R (1994) Soft sediment meiofaunal community structure in relation to a long-term heavy metal gradient in the Fal estuary system. Mar Ecol Prog Ser 105:79–88CrossRefGoogle Scholar
  65. Steyaert M, Garner N, Van Gansbeke D, Vincx M (1999) Nematode communities from the North Sea: environmental controls on species diversity and vertical distribution within the sediment. J Mar Biol Assoc UK 79:253–264CrossRefGoogle Scholar
  66. Steyaert M, Moodley L, Nadong T, Moens T, Soetaert K, Vincx M (2007) Responses of intertidal nematodes to short-term anoxic events. J Exp Mar Biol Ecol 345:175–184CrossRefGoogle Scholar
  67. Strickland J, Parsons T (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canada, OttawaGoogle Scholar
  68. Ter Braak C, Smilauer P (2002) CANOCO reference manual and CanoDraw for windows user's guide: software for canonical community ordination (version 4.5). Microcomputer Power, CANOCO, Ithaca, NYGoogle Scholar
  69. Thistle D, Sherman K (1985) The nematode fauna of a deep-sea site exposed to strong near-bottom currents. Deep Sea Res Part 1 Oceanogr Res Pap 32:1077–1088CrossRefGoogle Scholar
  70. Tietjen J (1976) Distribution and species diversity of deep-sea nematodes of North Carolina. Deep Sea Res Part 1 Oceanogr Res Pap 23:755–768Google Scholar
  71. Tietjen J (1980) Population structure and species composition of the free-living nematodes inhabiting sands on the New York Bight Apex. Estuar Coast Mar Sci 10:61–73CrossRefGoogle Scholar
  72. Tita G, Vincx M, Desrosier G (1999) Size spectra, body width and morphotypes of intertidal nematodes: an ecological interpretation. J Mar Biol Assoc UK 79:1007–1015CrossRefGoogle Scholar
  73. Tita G, Desrosiers G, Vincx M, Clément M (2002) Intertidal meiofauna of the St Lawrence estuary Quebec, Canada: diversity, biomass and feeding structure of nematode assemblages. J Mar Biol Assoc UK 82:779–791CrossRefGoogle Scholar
  74. Vafeiadou A, Materatski P, Adão H, De Troch M, Moens T (2013) Food sources of macrobenthos in an estuarine seagrass habitat (Zostera noltii) as revealed by dual stable isotope signatures. Mar Biol 160:2517–2523CrossRefGoogle Scholar
  75. Valle M, Chust G, del Campo A, Wisz M, Olsen S, Garmendia J, Borja A (2014) Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise. Biol Conserv 170:74–85CrossRefGoogle Scholar
  76. Van den Brink P, Ter Braak C (1999) Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environ Toxicol Chem 18:138–148CrossRefGoogle Scholar
  77. Van den Brink P, van Wijngaarden R, Lucassen W, Brock T, Leeuwangh P (1996) Effects of the insecticide Dursban 14E (a.i. chlorpyrifos) in outdoor experimental ditches. II. Invertebrate community responses. Environ Toxicol Chem 15:1143–1153CrossRefGoogle Scholar
  78. Vanaverbeke J, Steyaert M, Vanreusel A, Vincx M (2003) Nematode biomass spectra as descriptors of functional changes due to human and natural impact. Mar Ecol Prog Ser 249:157–170CrossRefGoogle Scholar
  79. Vanaverbeke J, Soetaert K, Vincx M (2004) Changes in morphometric characteristics of nematode communities during a spring phytoplankton bloom deposition. Mar Ecol Prog Ser 273:139–146CrossRefGoogle Scholar
  80. Vanhove S, Vermeeren H, Vanreusel A (2004) Meiofauna towards the South Sandwich Trench (750–6300 m) focus on nematodes. Deep Sea Res Part 2 Top Stud Oceanogr 51:1665–1687CrossRefGoogle Scholar
  81. Vidakovic J, Bogut I (2004) Aquatic nematodes of Sakadaš lake (Kopački rit Nature Park, Croatia). Biologia 59:567–575Google Scholar
  82. Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. Cabi Publishing, Wallingford, pp 187–195Google Scholar
  83. Ward S, Thomson N, White J, Brenner S (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J Comp Neurol 160:313–337CrossRefGoogle Scholar
  84. Warwick RM (1971) Nematode associations in the Exe Estuary. J Mar Biol Assoc UK 51:439–454CrossRefGoogle Scholar
  85. Warwick R, Price R (1979) Ecological and metabolic studies on free-living nematodes from an estuarine mudflat. Estuar Coast Mar Sci 9:257–271CrossRefGoogle Scholar
  86. Warwick R, Clarke K, Suharsono (1990) A statistical analysis of coral community responses to the 1982–1983 El Nino in the Thousand Islands, Indonesia. Coral Reefs 8:171–179CrossRefGoogle Scholar
  87. Waycott M, Duarte C, Carruthers T, Orth R, Dennison W, Olyarnik S, Calladine A, Fourqurean J, Heck K, Hughes A, Kendrick G, Kenworthy W, Short F, Williams S (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381CrossRefGoogle Scholar
  88. Webster P, Rowden A, Attrill M (1998) Effect of shoot density on the infaunal macroinvertebrate community within a Zostera marina seagrass bed. Estuar Coast Shelf Sci 47:351–357CrossRefGoogle Scholar
  89. Wieser W (1959) The effect of grain size on the distribution of small invertebrates inhabiting the beaches of Puget Sound. Limnol Oceanogr 4:181–194CrossRefGoogle Scholar
  90. Wright J, Jones C (2006) The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience 56:203–209CrossRefGoogle Scholar
  91. Zeppilli D, Sarrazin J, Leduc D, Arbizu PM, Fontaneto D, Fontanier C, Gooday AJ, Kristensen RM, Ivanenko VN, Sorensen MV, Vanreusel A, Thebault J, Mea M, Allio N, Andro T, Arvigo A, Castrec J, Danielo M, Foulon V, Fumeron R, Hermabessiere L, Hulot V, James T, Langonne-Augen R, Le Bot T, Long M, Mahabror D, Morel Q, Pantalos M, Pouplard E, Raimondeau L, Rio-Cabello A, Seite S, Traisnel G, Urvoy K, Van der Stegen T, Weyand M, Fernandes D (2015) Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar Biodivers 45(3):505–535CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICAAM-Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversidade de ÉvoraÉvoraPortugal
  2. 2.Department of Life Sciences, CFE-Centre for Functional EcologyUniversity of CoimbraCoimbraPortugal
  3. 3.School of Sciences and Technology, MARE-Marine and Environmental Sciences CentreUniversity of ÉvoraÉvoraPortugal

Personalised recommendations