Skip to main content

Advertisement

Log in

Coral reef degradation alters the isotopic niche of reef fishes

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The degradation of coral reefs is widely reported, yet there is a poor understanding of the adaptability of reef fishes to cope with benthic change. We tested the effects of coral reef degradation on the feeding plasticity of four reef fish species. We used isotopic niche sizes and mean δ15N and δ13C values of each species in two coral reefs that differed in benthic condition. The species chosen have contrasting feeding strategies; Chaetodon lunulatus (corallivore), Chrysiptera rollandi (zooplanktivore), Halichoeres melanurus (invertivore) and Zebrasoma velifer (herbivore). We predicted that the corallivore would have a lower mean δ15N value and a smaller isotopic niche size in the degraded reef, that the herbivore and the invertivore might have a larger isotopic niche size and/or a different mean δ13C value, whereas the zooplanktivore might be indifferent since the species is not linked to coral degradation. Some results matched our predictions; C. lunulatus had a smaller niche size on the degraded reef, but no difference in mean δ15N and δ13C values, and H. melanurus displayed an increase in niche size and a lower mean δ15N value on the degraded reef. Some other results were contrary to our predictions; whereas Z. velifer and C. rollandi had smaller mean δ13C values but no difference in niche size. Our findings suggest there may be feeding plasticity to maintain a similar diet despite contrasting habitat characteristics, with different amplitude depending on species. Such findings suggest that certain species guilds would probably adapt to changes linked to habitat degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bolnick DI, Ingram T, Stutz WE, Snowberg LK, Lau Lee O, Paull JS (2010) Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc R Soc B 277:1789–1797

    Article  Google Scholar 

  • Briand MJ, Bonnet X, Goiran C, Guillou G, Letourneur Y (2015) Major sources of organic matter in a complex coral reef lagoon: identification from isotopic signatures (δ13C and δ15N). PLoS One 10:e0131555

    Article  Google Scholar 

  • Briand MJ, Bonnet X, Guillou G, Letourneur Y (2016) Complex food webs in highly diversified coral reefs: insights from δ13C and δ15N stable isotopes. Food Webs 8:12–22

    Article  Google Scholar 

  • Cinner JE, Huchery C, MacNeil MA, Graham NAJ, McClanahan TR, Maina J, Maire E, Kittinger JN, Hicks CC, Mora C, Allison EH, D’Agata S, Hoey A, Feary DA, Crowder L, Williams ID, Kulbicki M, Vigliola L, Wantiez L, Edgar G, Stuart-Smith RD, Sandin SA, Green AL, Hardt MJ, Beger M, Friedlander A, Campbell SJ, Holmes KE, Wilson SK, Brokovich E, Brooks AJ, Cruz-Motta JJ, Booth DJ, Chabanet P, Gough C, Tupper M, Ferse SCA, Sumaila UR, Mouillot D (2016) Bright spots among the world’s coral reefs. Nature 535:416–419

    Article  CAS  Google Scholar 

  • Cucherousset J, Villéger S (2015) Quantifying the multiple facets of isotopic diversity: new metrics for stable isotope ecology. Ecol Indic 56:152–160

    Article  CAS  Google Scholar 

  • De Niro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geoch Cosmoch Acta 42:495–506

    Article  Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Nat Acad Sci 109:17995–17999

    Article  Google Scholar 

  • Elton C (1927) Animal ecology. Sidwick and Jackson, London

    Google Scholar 

  • Fry B (1988) Food web structure on George Bank from stable C, N, and S isotopic compositions. Limnol Oceanogr 33:1182–1190

    Article  CAS  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. An Rev Ecol Syst 19:207–233

    Article  Google Scholar 

  • Graham NAJ, McClanahan TR, MacNeil MA, Wilson SK, Polunin NVC, Jennings S, Chabanet P, Clark S, Spalding MD, Letourneur Y, Bigot L, Galzin R, Öhman MC, Garpe KC, Edwards AJ, Sheppard CRC (2008) Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems. PLoS One 3:e3039

    Article  Google Scholar 

  • Graham NAJ, Bellwood DR, Cinner JE, Hughes TP, Norström AV, Nyström M (2013) Managing resilience to reverse phase shifts in coral reefs. Front Ecol Envir 11:541–548

    Article  Google Scholar 

  • Graham NAJ, Chong-Seng KM, Huchery C, Januchowski-Hartley FA, Nash KL (2014) Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia. PLoS One 9:e101204

    Article  Google Scholar 

  • Graham NAJ, Jennings S, MacNeil MA, Mouillot D, Wilson SK (2015) Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94–97

    Article  CAS  Google Scholar 

  • Graham NAJ, McClanahan TR, MacNeil MA, Wilson SK, Cinner JE, Huchery C, Holmes TH (2017) Human disruption of coral reef trophic structure. Cur Biol 27:231–236

    Article  CAS  Google Scholar 

  • Green AL, Maypa AP, Almany GR, Rhodes KL, Weeks R, Abesamis RA, Gleason MG, Mumby PJ, White AT (2015) Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol Rev 90:1215–1247

    Article  Google Scholar 

  • Harmelin-Vivien ML (1989) Reef fish community structure: an Indo-Pacific comparison. In: Harmelin-Vivien ML, Bourlière F (eds) Vertebrates in complex systems. Springer, Berlin, pp 21–60

    Chapter  Google Scholar 

  • Harmelin-Vivien ML (2002) Energetics and fish diversity on coral reefs. In: Sale PF (ed) Coral reef fishes. Dynamics and diversity in a complex ecosystems. Academic Press, San Diego, pp 265–274

    Chapter  Google Scholar 

  • Harmelin-Vivien ML, Bouchon-Navaro Y (1983) Feeding diets and significance of coral feeding among chaetodontid fishes in Moorea (French Polynesia). Coral Reefs 2:119–127

    Article  Google Scholar 

  • Hempson TN, Graham NAJ, MacNeil MA, Williamson DH, Jones GP, Almany GR (2017a) Coral reef mesopredators switch prey, shortening food chains, in response to habitat degradation. Ecol Evol 7:2626–2635

    Article  Google Scholar 

  • Hempson TN, Graham NAJ, MacNeil MA, Bodin N, Wilson SK (2017b) Regime shifts shorten food chains for mesopredators with potential sublethal effects. Funct Ecol 00:1–11. https://doi.org/10.1111/1365-2435.13012

    Google Scholar 

  • Hixon MA (2011) 60 years of coral reef fish ecology: past, present, future. Bull Mar Sci 87:727–765

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Fresh Wat Res 50:839–866

    Article  Google Scholar 

  • Hoey A, Howells E, Johansen J, Hobbs J-P, Messmer V, McCowan D, Wilson S, Pratchett M (2016) Recent advances in understanding the effects of climate change on coral reefs. Diversity 8:12

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: sIBER—Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602

    Article  Google Scholar 

  • Kramer MJ, Bellwood DR, Bellwood O (2012) Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef. Coral Reefs 31:1007–1015

    Article  Google Scholar 

  • Lawson GL, Kramer DL, Hunte W (1999) Size-related habitat use and schooling behavior in two species of surgeonfish (Acanthurus bahianus and A. coeruleus) on a fringing reef in Barbados, West Indies. Env Biol Fish 54:19–33

    Article  Google Scholar 

  • Layman CA, Arrington DA, Montana CG, Post DM (2007) Can stable isotopes ratios provide for community-wide measures of trophic structure? Ecology 88:42–48

    Article  Google Scholar 

  • Letourneur Y (1996) Dynamics of fish communities on Réunion fringing reefs. I: patterns of spatial distribution. J Exp Mar Biol Ecol 195:1–30

    Article  Google Scholar 

  • Letourneur Y, Lison de Loma T, Richard P, Harmelin-Vivien ML, Cresson P, Banaru D, Fontaine MF, Gref T, Planes S (2013) Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope (δ15N and δ13C) analyses in two contrasted bays in Moorea, French Polynesia. Coral Reefs 32:1091–1102

    Article  Google Scholar 

  • Lieske E, Myers R (1994) Coral reef fishes. Indo-Pacific & Caribbean including the Red Sea, Haper Collins

    Google Scholar 

  • McClanahan TR, Graham NAJ, MacNeil MA, Muthiga NA, Cinner JE, Bruggemann JH, Wilson SK (2011) Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc Nat Acad Sci 108:17230–17233

    Article  CAS  Google Scholar 

  • McMahon KW, Thorrold SR, Houghton LA, Berumen ML (2015) Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180:809–821

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geoch Cosmoch Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • Mora C, Aburto-Oropeza O, Ayala Bocos A, Ayotte PM, Banks S, Bauman AG, Beger M, Bessudo S, Booth DJ, Brokovich E, Brooks A, Chabanet P, Cinner JE, Cortés J, Cruz-Motta JJ, Cupul Magana A, DeMartini EE, Edgar GJ, Feary DA, Ferse SCA, Friedlander AM, Gaston KJ, Gough C, Graham NAJ, Green A, Guzman H, Hardt M, Kulbicki M, Letourneur Y, Lopez Pérez A, Loreau M, Loya Y, Martinez C, Mascarenas-Osorio I, Morove T, Nadon M-O, Nakamura Y, Paredes G, Polunin NVC, Pratchett MS, Reyes Bonilla H, Rivera F, Sala E, Sandin SA, Soler G, Stuart-Smith R, Tessier E, Tittensor DP, Tupper M, Usseglio P, Vigliola L, Wantiez L, Williams I, Wilson SK, Zapata FA (2011) Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol 9:e1000606

    Article  CAS  Google Scholar 

  • Mumby PJ, Steneck RS, Adjeroud M, Arnold SN (2016) High resilience masks underlying sensitivity to algal phase shifts of Pacific coral reefs. Oikos 125:644–655

    Article  Google Scholar 

  • Nash KL, Welsh JQ, Graham NAJ, Bellwood DR (2015) Home-range allometry in coral reef fishes: comparison to other vertebrates, methodological issues and management implications. Oecologia 177:73–83

    Article  Google Scholar 

  • Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Envir 5:42–436

    Article  Google Scholar 

  • Odum EP (1959) A descriptive population ecology of land animals. Ecology 40:166

    Article  Google Scholar 

  • Pinnegar JK, Polunin NVC (1999) Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13:225–231

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–710

    Article  Google Scholar 

  • Pratchett MS (2005) Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. Mar Biol 148:373–382

    Article  Google Scholar 

  • Pratchett MS, Wilson SK, Berumen ML, McCormick MI (2004) Sublethal effects of coral bleaching on an obligate coral feeding butterflyfish. Coral Reefs 23:352–356

    Article  Google Scholar 

  • Riegl B, Purkis S (2015) Coral population dynamics across consecutive mass mortality events. Glob Change Biol 21:3995–4005

    Article  Google Scholar 

  • Roff G, Bejarano S, Bozec Y-M, Nugues M, Steneck R, Mumby PJ (2014) Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Mar Biol 161:1385–1393

    Article  Google Scholar 

  • Sale PF, Agardy T, Ainsworth CH, Feist BE, Bell JD, Christie P, Hoegh-Guldberg O, Mumby PJ, Feary DA, Saunders MI, Daw TM, Foale SJ, Levin PS, Lindeman KC, Lorenzen K, Pomeroy RS, Allison EH, Bradbury RH, Corrin J, Edwards AJ, Obura DO, Sadovy de Mitcheson YJ, Samoilys MA, Sheppard CRC (2014) Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar Poll Bull 85:8–23

    Article  CAS  Google Scholar 

  • Sweeting CJ, Barry JT, Polunin NVC, Jennings S (2007a) Effects of body size and environment on diet-tissue δ13C fractionation in fishes. J Exp Mar Biol Ecol 352:165–176

    Article  Google Scholar 

  • Sweeting CJ, Barry JT, Barnes C, Polunin NVC, Jennings S (2007b) Effects of body size and environment on diet-tissue δ15N fractionation in fishes. J Exp Mar Biol Ecol 340:1–10

    Article  CAS  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404

    Article  Google Scholar 

  • Vermeij MJ, van Moorselaar I, Engelhard S, Hörnlein C, Vonk SM, Visser PM (2010) The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS One 5:e14312

    Article  CAS  Google Scholar 

  • Wada E, Mizutani H, Minagawa M (1991) The use of stable isotopes for food web analysis. Critical Rev Food Sci Nutr 30:361–371

    Article  CAS  Google Scholar 

  • Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Change Biol 12:2220–2234

    Article  Google Scholar 

  • Wilson SK, Graham NAJ, Polunin NVC (2007) Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar Biol 151:1069–1076

    Article  Google Scholar 

  • Wilson SK, Adjeroud M, Bellwood DR, Berumen ML, Booth D, Bozec YM, Chabanet P, Cheal A, Cinner JE, Depczynski M, Feary DA, Gagliano M, Graham NAJ, Halford AR, Halpern BS, Harborne AR, Hoey AS, Holbrook S, Jones GP, Kulbicki M, Letourneur Y, Lison De Loma T, McClanahan TR, McCormick MI, Meekan MG, Mumby PJ, Munday PL, Öhman MC, Pratchett MS, Riegl B, Sano M, Schmitt RJ, Syms C (2010) Critical knowledge gaps in current understanding of climate change impacts on coral reef fishes. J Exp Biol 213:894–900

    Article  CAS  Google Scholar 

  • Wyatt ASJ, Waite AM, Humphries S (2012) Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef. Coral Reefs 31:1029–1044

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to Antoine Teitelbaum for his help in catching fish, to Clément Pigot for his help in preparing samples, to Gaël Guillou for running stable isotopic analyses, to the Province Sud of New Caledonia for permitting the sampling (permit no.: 3238-2014/ARR/DENV), to the University of New Caledonia for funding the field-trip of Nicholas Graham. We thank the anonymous referees for their constructive comments that allowed us to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Letourneur.

Ethics declarations

Funding

This research received no specific Grant from any funding agency, commercial or non-profit sectors.

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical statement

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: K.D. Clements.

Reviewed by C. Bradley and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letourneur, Y., Briand, M.J. & Graham, N.A.J. Coral reef degradation alters the isotopic niche of reef fishes. Mar Biol 164, 224 (2017). https://doi.org/10.1007/s00227-017-3272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3272-0

Navigation