Skip to main content

Advertisement

Log in

The nutritional basis of seasonal selective feeding by a marine herbivorous fish

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Marine herbivorous fishes have the potential to significantly impact reef ecology through selective feeding on macroalgae. However, the nutritional drivers underlying their diet choice are often poorly understood. Here we examine diet, nutrient ingestion and assimilation in a marine herbivorous fish (Odax pullus; Labridae) endemic to temperate rocky reefs in New Zealand. Individuals were sampled across the year and across key life history stages to obtain a comprehensive insight into the nutritional consequences of feeding behaviour. Seasonal and ontogenetic changes in diet resulted in significant changes in the relative proportion of macronutrients ingested, and these changes coincided with periods of rapid somatic and reproductive tissue growth. In particular, protein and the sugar alcohol mannitol are likely to be important determinants of adult diets, and the seasonal availability of these nutrients is likely to be a key factor shaping the ecology and life history of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams NM (1994) Seaweeds of New Zealand an illustrated guide. Canterbury University Press, Christchurch

    Google Scholar 

  • Aitken KA, Melton LD, Brown MT (1991) Seasonal protein variation in the New Zealand seaweeds Porphyra columbina Mont. & Porphyra subtumens J. Ag. (Rhodophyceae). Jpn J Phycol 39:307–317

    CAS  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for primer: guide to software and statistical methods. Primer-E, Plymouth

    Google Scholar 

  • Baker EJC, Clauss M, Clements KD (2016) Selection and intake of algal species in butterfish (Odax pullus; Labridae). Mar Biol 163:163–168

    Article  Google Scholar 

  • Barbarino E, Lourenco SO (2005) An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 17:447–460

    Article  CAS  Google Scholar 

  • Barboza PS, Parker KL, Hume ID (2009) Integrative wildlife nutrition. Springer, Heidelberg

    Book  Google Scholar 

  • Bellwood DR (1988) Ontogenetic changes in the diet of early post-settlement Scarus species (Pisces: Scaridae). J Fish Biol 33:213–219. doi:10.1111/j.1095-8649.1988.tb05464.x

    Article  Google Scholar 

  • Benavides AG, Cancino JM, Ojeda FP (1994) Ontogenetic changes in gut dimensions and macroalgal digestibility in the marine herbivorous fish, Aplodactylus punctatus. Funct Ecol 8:46–51

    Article  Google Scholar 

  • Bergeron E, Jolivet P (1991) Quantitative-determination of glutamate in a Rhodophyceae (Chondrus crispus) and 4 Phaeophyceae (Fucus vesiculosus, Fucus serratus, Cystoseira elegans, Cystoseira barbata). J Appl Phycol 3:115–120

    Article  CAS  Google Scholar 

  • Bjorndal KA (1985) Use of ash as an indigestible dietary marker. Bull Mar Sci 36:224–230

    Google Scholar 

  • Boyer KE, Fong P, Armitage AR, Cohen RA (2004) Elevated nutrient content of tropical macroalgae increases rates of herbivory in coral, seagrass, and mangrove habitats. Coral Reefs 23:530–538

    Google Scholar 

  • Choat JH (1991) The biology of herbivorous fishes on coral reefs. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego

  • Choat JH, Clements KD (1992) Diet in odacid and aplodactylid fishes from Australia and New-Zealand. Aust J Mar Freshw Res 43:1451–1459

    Article  Google Scholar 

  • Choat JH, Clements KD (1998) Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu Rev Ecol Syst 29:375–403

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) Primer v6. Primer-E ltd. http://primer-e.com

  • Clements KD, Bellwood DR (1988) A comparison of the feeding mechanisms of 2 herbivorous labroid fishes, the temperate Odax pullus and the tropical Scarus rubroviolaceus. Aust J Mar Freshw Res 39:87–107

    Article  CAS  Google Scholar 

  • Clements KD, Choat JH (1993) Influence of season, ontogeny and tide on the diet of the temperate marine herbivorous fish Odax pullus (Odacidae). Mar Biol 117:213–220

    Article  Google Scholar 

  • Clements KD, Choat JH (1997) Comparison of herbivory in the closely-related marine fish genera Girella and Kyphosus. Mar Biol 127:579–586

    Article  Google Scholar 

  • Clements KD, Gleeson VP, Slaytor M (1994) Short-chain fatty acid metabolism in temperate marine herbivorous fish. J Comp Physiol B 164:372–377

    Article  CAS  Google Scholar 

  • Clements KD, Zemke-White WL (2008) Diet of subtropical fishes in northeastern New Zealand. NZ J Mar Freshw Res 42:47–55

    Article  Google Scholar 

  • Clements KD, Raubenheimer D, Choat JH (2009) Nutritional ecology of marine herbivorous fishes: ten years on. Funct Ecol 23:79–92. doi:10.1111/j.1365-2435.2008.01524.x

    Article  Google Scholar 

  • Clements KD, German DP, Piché J, Tribollet A, Choat JH (2017) Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol J Linn Soc 120:729–751. doi:10.1111/bij.12914

    Google Scholar 

  • Crossman DJ, Clements KD, Cooper GJS (2000) Determination of protein for studies of marine herbivory: a comparison of methods. J Exp Mar Biol Ecol 244:45–65

    Article  CAS  Google Scholar 

  • Day RD, German DP, Tibbetts IR (2011) Why can’t young fish eat plants? Neither digestive enzymes nor gut development preclude herbivory in the young of a stomachless marine herbivorous fish. Comp Biochem Physiol B Biochem Mol Biol 158:23–29

    Article  Google Scholar 

  • Dromgoole F (1973) A contribution to the biology of the genus Carpophyllum Grev. PhD thesis, University of Auckland, Auckland

  • Felton AM, Felton A, Wood JT, Foley WJ, Raubenheimer D, Wallis IR, Lindenmayer DB (2009) Nutritional ecology of Ateles chamek in lowland Bolivia: how macronutrient balancing influences food choices. Int J Primatol 30:675–696

    Article  Google Scholar 

  • Fishelson L, Montgomery LW, Myrberg AH (1987) Biology of surgeonfish Acanthurus nigrofuscus with emphasis on changeover in diet and annual gonadal cycles. Mar Ecol Prog Ser 39:37–47

    Article  Google Scholar 

  • Fontaine J (2003) Amino acid analysis of feeds. In: D’Mello JPF (ed) Amino acids in animal nutrition. CABI Publishing, Wallingford, pp 15–40

    Chapter  Google Scholar 

  • German DP (2011) Digestive Efficiency. In: Farrell AP, Chech JG, Richards JG, Stevens CE (eds) Encycolpedia of fish physiology. From Genome to Environment. Elsevier, San Diego

    Google Scholar 

  • Graiff A, Ruth W, Kragl U, Karsten U (2016) Chemical characterization of the brown algal storage compound laminarin—a new methodological approach. J Appl Phycol 28:533–543

    Article  CAS  Google Scholar 

  • Hay ME (1991) Fish-seaweed interactions on coral reefs: effects of herbivorous fishes and adaptations of their prey. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, California, pp 96–118

    Chapter  Google Scholar 

  • Horn MH (1989) Biology of marine herbivorous fishes. Oceanogr Mar Biol Annu Rev 27:167–272

    Google Scholar 

  • Horn MH (1992) Herbivorous fishes: feeding and digestive mechanisms. In: John DM, Hawkins SJ, Price JH (eds) Plant–animal interactions in the marine benthos. Clarendon Press, Oxford, pp 339–362

    Google Scholar 

  • Iwao T, Kurashima A, Maegawa M (2008) Effect of seasonal changes in the photosynthes mannitol and laminarin on maturation of Ecklonia cava (Phaeophyceae, Laminariales) in Nishiki Bay, central Japan. Phycol Res 56:1–6

    Article  CAS  Google Scholar 

  • Jobling M, Coves D, Damsgard B, Kristiansen HR, Koskela J, Petursdottir TE, Kadri S, Gudmundsson O (2001) Techniques for measuring feed intake. In: Houlihan D, Boujard T, Jobling M (eds) Food intake in fish. Blackwell, Oxford, pp 49–87

    Chapter  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Lourenco SO, Barbarino E, De-Paula JC, da Otavio S, Pereira L, Lanfer Marquez UM (2002) Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors in 19 tropical seaweeds. Phycol Res 50:233–241

    Article  CAS  Google Scholar 

  • Mann R, Gallager SM (1985) Physiological and biochemical energetics of larvae of Teredo navalis L. and Bankia gouldi (Bartsch) (Bivalvia : Teredinidae). J Exp Mar Biol Ecol 85:211–228

    Article  CAS  Google Scholar 

  • Montgomery WL, Gerking SD (1980) Marine macroalgae as food for fishes: an evaluation of potential food quality. Environ Biol Fish 5:143–153

    Article  Google Scholar 

  • Moran D, Clements KD (2002) Diet and endogenous carbohydrases in the temperate marine herbivorous fish Kyphosus sydneyanus. J Fish Biol 60:1190–1203

    Article  Google Scholar 

  • Morton J, Miller MC (1973) The New Zealand sea shore. Collins, London

    Google Scholar 

  • Morton JK, Platell ME, Gladstone W (2008) Differences in feeding ecology amoung three co-occurring species of wrass (Teleostei: Labridae) on rocky reefs of temperate Australia. Mar Biol 154:577–592

    Article  Google Scholar 

  • Mountfort DO, Campbell J, Clements KD (2002) Hindgut fermentation in three species of marine herbivorous fish. Appl Environ Microbiol 68:1374–1380

    Article  CAS  Google Scholar 

  • Muñoz AA, Ojeda FP (2000) Ontogenetic changes in the diet of the herbivorous Scartichthys viridis in a rocky intertidal zone in central Chile. J Fish Biol 56:986–998. doi:10.1111/j.1095-8649.2000.tb00887.x

    Article  Google Scholar 

  • Ogden JC, Lobel PS (1978) The role of herbivorous fishes and urchins in coral reef communities. Environ Biol Fishes 3:49–63. doi:10.1007/bf00006308

    Article  Google Scholar 

  • Ojeda FP, Munoz AA (1999) Feeding selectivity of the herbivorous fish Scartichthys viridis: effects on macroalgal community structure in a temperate rocky intertidal coastal zone. Mar Ecol Prog Ser 184:219–229

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, H W (2016) Vegan: community ecology package. R package version 2.4–3. https://CRAN.R-project.org/package=vegan

  • Orloci L (1967) An agglomerative method for classification of plant communities. J Ecol 55:193–206

    Article  Google Scholar 

  • Percival E, McDowell MR (1967) Chemistry and enzymology of marine algal polysaccharides. Academic Press, London

    Google Scholar 

  • Pillans RD, Franklin CE, Tibbetts IR (2004) Food choice in Siganus fuscescens: influence of macrophyte nutrient content and availability. J Fish Biol 64:297–309. doi:10.1111/j.0022-1112.2004.00261.x

    Article  Google Scholar 

  • Prado P, Romero J, Alcoverro T (2010) Nutrient status, plant availability and seasonal forcing mediate fish herbivory in temperate seagrass beds. Mar Ecol Prog Ser 409:229–239. doi:10.3354/meps08585

    Article  Google Scholar 

  • Rasband WS (2008) ImageJ. National Institutes of Health, Maryland

    Google Scholar 

  • Raubenheimer D (2011) Towards a quantitative nutritional ecology: the right-angled mixture triangle. Ecol Monogr 81:407–427

    Article  Google Scholar 

  • Raubenheimer D, Simpson SJ (1997) Integrative models of nutrient balancing: application to insects and vertebrates. Nutr Res Rev 10:151–179

    Article  CAS  Google Scholar 

  • Raubenheimer D, Zemke-White WL, Phillips RJ, Clements KD (2005) Algal macronutrients and food selection by the omnivorous marine fish Girella tricuspidata. Ecology 86:2601–2610

    Article  Google Scholar 

  • Raubenheimer D, Simpson SJ, Mayntz D (2009) Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct Ecol 23:4–16

    Article  Google Scholar 

  • Seeto GS, Veivers PC, Clements KD, Slaytor M (1996) Carbohydrate utilisation by microbial symbionts in the marine herbivorous fishes Odax cyanomelas and Crinodus lophodon. J Comp Physiol [B] 165:571–579

    Article  CAS  Google Scholar 

  • Shears NT, Babcock RC (2007) Quantitative description of mainland New Zealand’s shallow subtiday reef communities. Department for Conservation, Wellington

    Google Scholar 

  • Simpson SJ, Raubenheimer D (2012) The nature of nutrition: a unifying framework from animal adaptation to human obesity. Princeton University Press, Princeton

    Book  Google Scholar 

  • Simpson SJ, Sword G, Lorch P, Couzin I (2006) Cannibal crickets on a forced march for protein and salt. Proc Natl Acad Sci 103:4152–4156

    Article  CAS  Google Scholar 

  • Sinclair AR, Mduma SA, Arcese P (2000) What determines phenology and synchrony of ungulate breeding in Serengeti? Ecology 81:2100–2111

    Article  Google Scholar 

  • Skea GL, Mountfort DO, Clements KD (2005) Gut carbohydrases from the New Zealand marine herbivorous fishes Kyphosus sydneyanus (Kyphosidae), Aplodactylus arctidens (Aplodactylidae) and Odax pullus (Labridae). Comp Biochem Physiol B Biochem Mol Biol 140:259–269

    Article  CAS  Google Scholar 

  • Stewart CM, Higgins HG, Austin S (1961) Seasonal variation in Alginic acid, mannitol, laminarin and fucoidin in the Brown algae, Eklonia radiata. Nature 192:1208

    Article  CAS  Google Scholar 

  • Taylor DI, Schiel DR (2010) Algal populations controlled by fish herbivory across a wave exposure gradient on southern temperate shores. Ecology 91:201–211. doi:10.1890/08-1512.1

    Article  Google Scholar 

  • Trip EDL, Clements KD, Raubenheimer D, Choat JH (2011a) Reproductive biology of an odacine labrid, Odax pullus. J Fish Biol 78:741–761

    Article  CAS  Google Scholar 

  • Trip EDL, Raubenheimer D, Clements KD, Choat JH (2011b) Reproductive demography of a temperate protogynous and herbivorous fish, Odax pullus (Labridae, Odacini). Mar Freshw Res 62:176–186

    CAS  Google Scholar 

  • Usov AI, Smironova GP, Bilan MI, Shashkov AS (1998) Polysaccharides of algae. 53, Brown alga Laminaria saccharina (L.) Lam. as a source of fucoidan. Russ J Bioorg Chem 24:437–445

    CAS  Google Scholar 

  • Verges A, Vanderklift MA, Doropoulos C, Hyndes GA (2011) Spatial patterns in herbivory on a coral reef are influenced by structural complexity but not by algal traits. PLoS One 6:e17115

    Article  CAS  Google Scholar 

  • White TCR (1985) When is a herbivore not a herbivore? Oecologia 67:596–597

    Article  CAS  Google Scholar 

  • White WL, Coveny AH, Robertson J, Clements KD (2010) Utilisation of mannitol by temperate marine herbivorous fishes. J Exp Mar Biol Ecol 391:50–56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank B. Doak and M. Birch for assistance with sample collection, Dr. H. Bolding, C. Goh and B. Dobson for assistance with HPLC analysis, and Dr. E. D. L Trip for help throughout all stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jethro S. Johnson.

Ethics declarations

Funding

This study was funded by a Royal Society of New Zealand Marsden Fund award (UOA0404) to Kendall Clements and David Raubenheimer. Jethro Johnson was supported by a Commonwealth Scholarship awarded by the Commonwealth Scholarship Commission, UK.

Conflict of interest

Jethro Johnson declares he has no conflict of interest. Kendall Clements declares he has no conflict of interest. David Raubenheimer declares he has no conflict of interest.

Ethical approval

Samples were collected under New Zealand Ministry of Fisheries permit 385, and all animal work was carried out following University of Auckland Animal Ethics Committee Approval (#AEC/03/2006/R456).

Additional information

Responsibile Editor: D. Goulet.

Reviewed by Undisclosed experts.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, J.S., Clements, K.D. & Raubenheimer, D. The nutritional basis of seasonal selective feeding by a marine herbivorous fish. Mar Biol 164, 201 (2017). https://doi.org/10.1007/s00227-017-3223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3223-9

Navigation