Skip to main content

Advertisement

Log in

Invasion genomics: genotyping-by-sequencing approach reveals regional genetic structure and signatures of temporal selection in an introduced mud crab

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Introduced species can cause large impacts on communities and ecosystems. To prevent invasions and the impacts of invasions, a better understanding of species-specific invasion routes, establishment processes, demographic histories and range expansions is needed. Such valuable biological information can be obtained using population genomics approaches that allow fast and simultaneous screening of thousands of loci and SNP markers without prior knowledge of the genome of studied species. As a result, invasion genomics has the potential to reveal previously undetected population relationships, invasion routes and evolutionary patterns. Here, we characterized the genetic diversity, structure, temporal stability and putative footprints of selection in introduced Baltic Sea populations of the mud crab Rhithropanopeus harrisii using restriction-site associated DNA (RAD) sequencing. Similar to earlier mtDNA reports, analysis of 1013 SNPs revealed strong differentiation between the native and introduced populations. At a regional scale, clear evidence of population structuring was detected between Finnish and Estonian samples indicating that R. harrisii does not form a single panmictic population in the Baltic Sea. Clustering of samples according to the age groups (juvenile and adult) instead of geographical location within the Archipelago Sea revealed the presence of significant temporal variation at small spatial scale. Finally, we identified a number of outlier loci under temporal divergent selection between cohorts suggesting that contemporary selection in newly established areas may be stronger than selection associated with spatial heterogeneity within the Baltic Sea. These results demonstrate the utility of next-generation sequencing to increase understanding of the population diversity and structuring, and highlight the importance of temporal genetic analysis when dissecting fine-scale genetic structure for introduced marine species with high reproductive potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92. doi:10.1038/nrg.2015.28

    Article  CAS  Google Scholar 

  • Bacevičius E, Gasiunaite ZR (2008) Two crab species—Chinese mitten crab (Eriocheir sinensis Edw.) and mud crab (Rhithropanopeus harrisii (Gould) ssp. tridentatus (Maitland) in the Lithuanian coastal waters, Baltic Sea. Transit Waters Bull 2:63–68. doi:10.1285/i1825229Xv2n2p63

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MA, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376. doi:10.1371/journal.pone.0003376

    Article  Google Scholar 

  • Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323. doi:10.1016/S0308-597X(03)00041-1

    Article  Google Scholar 

  • Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980. doi:10.1111/j.1365-294X.2004.02125.x

    Article  CAS  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B 263:1619–1626

    Article  Google Scholar 

  • Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH (2015) What we still don’t know about invasion genetics. Mol Ecol 24:2277–2297. doi:10.1111/mec.13032

    Article  Google Scholar 

  • Boyle T, Keith D, Pfau R (2010) Occurrence, reproduction, and population genetics of the estuarine mud crab, Rhithropanopeus harrisii (Gould) (Decapoda, Panopidae) in Texas freshwater reservoirs. Crustaceana 83:493–505. doi:10.1163/001121610X492148

    Article  Google Scholar 

  • Colautti RI, Lau JA (2015) Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol 24:1999–2017. doi:10.1111/mec.13162

    Article  Google Scholar 

  • Costlow JJ, Bookhout CG, Monroe RT (1966) Studies on the larval development of the crab, Rhithropanopeus harrisii (Gould). The effect of salinity and temperature on larval development. Physiol Zool 39:81–100

    Article  Google Scholar 

  • Cronin TW (1982) Estuarine retention of larvae of the crab Rhithropanopeus harrisii. Estuar Coast Shelf Sci 15:207–220. doi:10.1016/0272-7714(82)90028-2

    Article  Google Scholar 

  • Cronin TW, Forward RB (1986) Vertical migration cycles of crab larvae and their role in larval dispersal. Bull Mar Sci 39:192–201

    Google Scholar 

  • Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Écoscience 12:316–329. doi:10.2980/i1195-6860-12-3-316.1

    Article  Google Scholar 

  • Davey J, Hohenlohe P, Etter P, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. doi:10.1038/nrg3012

    Article  CAS  Google Scholar 

  • Deangelis MM, Wang DG, Hawkins TL (1995) Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res 23:4742–4743. doi:10.1093/nar/23.22.4742

    Article  CAS  Google Scholar 

  • Demel K (1953) New species of Baltic Sea fauna. Kosmos 1:105–106

    Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi:10.1111/j.1365-294X.2007.03538.x

    Article  CAS  Google Scholar 

  • Dlugosch KM, Anderson SR, Braasch J, Cang AF, Gillette HD (2015) The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 24:2095–2111. doi:10.1111/mec.13183

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. doi:10.1371/journal.pone.0019379

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587. doi:10.1111/j.1471-8286.2007.01758.x

    CAS  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993. doi:10.1534/genetics.108.092221

    Article  Google Scholar 

  • Forsström T, Fowler AE, Manninen I, Vesakoski O (2015) An introduced species meets the local fauna: predatory behavior of the crab Rhithropanopeus harrisii in the Northern Baltic Sea. Biol Invasions 17:2729–2741. doi:10.1007/s10530-015-0909-0

    Article  Google Scholar 

  • Fowler AE, Forsström T, von Numers M, Vesakoski O (2013) The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized Northern Baltic Sea: distribution and ecology. Aquat Invasions 8:89–96. doi:10.3391/ai.2013.8.1.10

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486. doi:10.1093/oxfordjournals.jhered.a111627

    Article  Google Scholar 

  • Hecht BC, Campbell NR, Holecek DE, Narum SR (2013) Genome-wide association reveals genetic basis for the propensity to migrate in wild populations of rainbow and steelhead trout. Mol Ecol 22:3061–3076. doi:10.1111/mec.12082

    Article  CAS  Google Scholar 

  • Hegele-Drywa J, Normant M (2014) Non-native crab Rhithropanopeus harrisii (Gould, 1984)—a new component of the benthic communities in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia 56:125–139. doi:10.5697/oc.56-1.125

    Article  Google Scholar 

  • Hegele-Drywa J, Thiercelin N, Schubart CD, Normant-Saremba M (2015) Genetic diversity of the non-native crab Rhithropanopeus harrisii (Brachyura: Panopeidae) in the Polish coastal waters—an example of patchy genetic diversity at a small geographic scale. Oceanol Hydrobiol Stud 44:305–315. doi:10.1515/ohs-2015-0029

    Article  CAS  Google Scholar 

  • HELCOM (2015) BALSAM PROJECT—WORK PACKAGE 4: testing monitoring methods for non-indigenous species in Baltic ports

  • Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, Poss ML, Reed LK, Storfer A, Whitlock MC (2016) Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat 188:379–397. doi:10.1086/688018

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. doi:10.1093/bioinformatics/btm233

    Article  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi:10.1186/1471-2156-11-94

    Article  Google Scholar 

  • Jormalainen V, Gagnon K, Sjöroos J, Rothäusler E (2016) The invasive mud crab enforces a major shift in a rocky littoral invertebrate community of the Baltic Sea. Biol Invasions 18:1409–1419. doi:10.1007/s10530-016-1090-9

    Article  Google Scholar 

  • Kesäniemi JE, Mustonen M, Boström C, Hansen BW, Knott EK (2014) Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity. BMC Evol Biol 14:12. doi:10.1186/1471-2148-14-12

    Article  Google Scholar 

  • Kotta J, Ojaveer H (2012) Rapid establishment of the alien crab Rhithropanopeus harrisii (Gould) in the Gulf of Riga. Est J Ecol 61:293–298. doi:10.3176/eco.2012.4.04

    Article  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923

    Article  CAS  Google Scholar 

  • Laughlin RB, French W (1989a) Interactions between temperature and salinity during brooding on subsequent zoeal development of the mud crab Rhithropanopeus harrisii. Mar Biol 102:377–386

    Article  Google Scholar 

  • Laughlin RB, French W (1989b) Differences in responses to factorial combinations of temperature and salinity by zoeae from two geographically isolated populations of the mud crab Rhithropanopeus harrisii. Mar Biol 102:387–395

    Article  Google Scholar 

  • Lawson Handley LJ, Estoup A, Evans DM, Thomas CE, Lombaert E, Facon B, Aebi A, Roy HE (2011) Ecological genetics of invasive alien species. Biocontrol 56:409–428. doi:10.1007/s10526-011-9386-2

    Article  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. doi:10.1093/bioinformatics/btr509

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352

    Article  Google Scholar 

  • Lischer HEL, Excoffier L (2012) PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28:298–299. doi:10.1093/bioinformatics/btr642

    Article  CAS  Google Scholar 

  • Moody KN, Hunter SN, Childress MJ, Blob RW, Schoenfuss HL, Blum MJ, Ptacek MB (2015) Local adaptation despite high gene flow in the waterfall-climbing Hawaiian goby, Sicyopterus stimpsoni. Mol Ecol 24:545–563. doi:10.1111/mec.13016

    Article  CAS  Google Scholar 

  • Myrand B, Tremblay R, Sévigny J-M (2002) Selection against blue mussels (Mytilus edulis L.) homozygotes under various stressful conditions. J Hered 93:238–248. doi:10.1093/jhered/93.4.238

    Article  CAS  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution (N Y) 29:1–10

    Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358. doi:10.1093/bioinformatics/12.4.357

    CAS  Google Scholar 

  • Palomar G, Ahmad F, Vasemägi A, Matsuba C, Nicieza AG, Cano JM (2017) comparative high-density linkage mapping reveals conserved genome structure but variation in levels of heterochiasmy and location of recombination cold spots in the common Frog. G3. G3 Genes Genomes Genet 7:637–645. doi:10.1534/g3.116.036459

    Google Scholar 

  • Petersen C (2006) Range expansion in the northeast Pacific by an estuary mud crab—a molecular study. Biol Invasions 8:565–576. doi:10.1007/s10530-005-0160-1

    Article  Google Scholar 

  • Projecto-Garcia J, Cabral H, Schubart CD (2010) High regional differentiation in a North American crab species throughout its native range and invaded European waters: a phylogeographic analysis. Biol Invasions 12:253–263. doi:10.1007/s10530-009-9447-y

    Article  Google Scholar 

  • Pukk L, Ahmad F, Hasan S, Kisand V, Gross R, Vasemägi A (2015) Less is more: extreme genome complexity reduction with ddRAD using Ion Torrent semiconductor technology. Mol Ecol Resour 15:1145–1152. doi:10.1111/1755-0998.12392

    Article  CAS  Google Scholar 

  • Rius M, Turon X, Bernardi G, Volckaert FAM, Viard F (2015) Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes. Biol Invasions 17:869–885. doi:10.1007/s10530-014-0792-0

    Article  Google Scholar 

  • Roche DR, Torchin ME (2007) Established population of the North American Harris mud crab, Rhithropanopeus harrisii (Gould 1841) (Crustacea: Brachyura: Xanthidae) in the Panama Canal. Aquat Invasions 2:155–161. doi:10.3391/ai.2007.2.3.1

    Article  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. doi:10.1016/j.tree.2007.07.002

    Article  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. doi:10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  Google Scholar 

  • Ruiz GM, Carlton JT, Grosholz ED, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632. doi:10.1093/icb/37.6.621

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi:10.1093/oxfordjournals.molbev.a040454

    CAS  Google Scholar 

  • Sherman CDH, Lotterhos KE, Richardson MF, Tepolt CK, Rollins LA, Palumbi SR, Miller AD (2016) What are we missing about marine invasions? Filling in the gaps with evolutionary genomics. Mar Biol 163:1–24. doi:10.1007/s00227-016-2961-4

    Article  CAS  Google Scholar 

  • Tanguy A, Castro NF, Marhic A, Moraga D (1999) Effects of an organic pollutant (Tributyltin) on genetic structure in the pacific oyster Crassostrea gigas. Mar Pollut Bull 38:550–559

    Article  CAS  Google Scholar 

  • Tepolt CK, Palumbi SR (2015) Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader. Mol Ecol 24:4145–4158. doi:10.1111/mec.13294

    Article  CAS  Google Scholar 

  • Turoboyski K (1973) Biology and ecology of the crab Rhithropanopeus harrisii ssp. tridentatus. Mar Biol 23:303–313. doi:10.1007/BF00389338

    Article  Google Scholar 

  • Uller T, Leimu R (2011) Founder events predict changes in genetic diversity during human-mediated range expansions. Glob Chang Biol 17:3478–3485. doi:10.1111/j.1365-2486.2011.02509.x

    Article  Google Scholar 

  • Vasemägi A, Primmer CR (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Mol Ecol 14:3623–3642. doi:10.1111/j.1365-294X.2005.02690.x

    Article  Google Scholar 

  • Welsh AB, Baerwald MR, Friday M, May B (2014) The effect of multiple spawning events on cohort genetic diversity of lake sturgeon (Acipenser fulvescens) in the Kaministiquia River. Environ Biol Fishes 98:755–762. doi:10.1007/s10641-014-0309-9

    Article  Google Scholar 

  • Williams A (1984) Shrimps, lobsters, and crabs of the Atlantic coast of the eastern United States, Maine to Florida. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Wolff T (1954) Occurrence of two east American species of crabs in European waters. Nature 174:188–189

    Article  Google Scholar 

  • Wolff WJ (2005) Non-indigenous marine and estuarine species in The Netherlands. Zool Meded 79:1–116

    Google Scholar 

  • Zenger KR, Richardson BJ, Vachot-Griffin AM (2003) A rapid population expansion retains genetic diversity within European rabbits in Australia. Mol Ecol 12:789–794. doi:10.1046/j.1365-294X.2003.01759.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Amy Fowler, Jonne Kotta and Riikka Puntila for providing R. harrisii samples from US, Estonia, Poland and Denmark. We thank Veijo Jormalainen, Amy Fowler and two anonymous reviewers for the comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiia Forsström.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed.

Funding

This study was supported by the Academy of Finland (Grant no. 266321) and Estonian Ministry of Education and Research Institutional Research Fund (project IUT8-2).

Additional information

Responsible Editor: E. Briski.

Reviewed by F. Maroso and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsström, T., Ahmad, F. & Vasemägi, A. Invasion genomics: genotyping-by-sequencing approach reveals regional genetic structure and signatures of temporal selection in an introduced mud crab. Mar Biol 164, 186 (2017). https://doi.org/10.1007/s00227-017-3210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3210-1

Navigation