Advertisement

Marine Biology

, 164:186 | Cite as

Invasion genomics: genotyping-by-sequencing approach reveals regional genetic structure and signatures of temporal selection in an introduced mud crab

  • Tiia ForsströmEmail author
  • Freed Ahmad
  • Anti Vasemägi
Original paper

Abstract

Introduced species can cause large impacts on communities and ecosystems. To prevent invasions and the impacts of invasions, a better understanding of species-specific invasion routes, establishment processes, demographic histories and range expansions is needed. Such valuable biological information can be obtained using population genomics approaches that allow fast and simultaneous screening of thousands of loci and SNP markers without prior knowledge of the genome of studied species. As a result, invasion genomics has the potential to reveal previously undetected population relationships, invasion routes and evolutionary patterns. Here, we characterized the genetic diversity, structure, temporal stability and putative footprints of selection in introduced Baltic Sea populations of the mud crab Rhithropanopeus harrisii using restriction-site associated DNA (RAD) sequencing. Similar to earlier mtDNA reports, analysis of 1013 SNPs revealed strong differentiation between the native and introduced populations. At a regional scale, clear evidence of population structuring was detected between Finnish and Estonian samples indicating that R. harrisii does not form a single panmictic population in the Baltic Sea. Clustering of samples according to the age groups (juvenile and adult) instead of geographical location within the Archipelago Sea revealed the presence of significant temporal variation at small spatial scale. Finally, we identified a number of outlier loci under temporal divergent selection between cohorts suggesting that contemporary selection in newly established areas may be stronger than selection associated with spatial heterogeneity within the Baltic Sea. These results demonstrate the utility of next-generation sequencing to increase understanding of the population diversity and structuring, and highlight the importance of temporal genetic analysis when dissecting fine-scale genetic structure for introduced marine species with high reproductive potential.

Notes

Acknowledgements

We sincerely thank Amy Fowler, Jonne Kotta and Riikka Puntila for providing R. harrisii samples from US, Estonia, Poland and Denmark. We thank Veijo Jormalainen, Amy Fowler and two anonymous reviewers for the comments that greatly improved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed.

Funding

This study was supported by the Academy of Finland (Grant no. 266321) and Estonian Ministry of Education and Research Institutional Research Fund (project IUT8-2).

Supplementary material

227_2017_3210_MOESM1_ESM.pdf (210 kb)
Supplementary material 1 (PDF 210 kb)

References

  1. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92. doi: 10.1038/nrg.2015.28 CrossRefGoogle Scholar
  2. Bacevičius E, Gasiunaite ZR (2008) Two crab species—Chinese mitten crab (Eriocheir sinensis Edw.) and mud crab (Rhithropanopeus harrisii (Gould) ssp. tridentatus (Maitland) in the Lithuanian coastal waters, Baltic Sea. Transit Waters Bull 2:63–68. doi: 10.1285/i1825229Xv2n2p63 Google Scholar
  3. Baird NA, Etter PD, Atwood TS, Currey MA, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376. doi: 10.1371/journal.pone.0003376 CrossRefGoogle Scholar
  4. Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323. doi: 10.1016/S0308-597X(03)00041-1 CrossRefGoogle Scholar
  5. Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980. doi: 10.1111/j.1365-294X.2004.02125.x CrossRefGoogle Scholar
  6. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B 263:1619–1626CrossRefGoogle Scholar
  7. Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH (2015) What we still don’t know about invasion genetics. Mol Ecol 24:2277–2297. doi: 10.1111/mec.13032 CrossRefGoogle Scholar
  8. Boyle T, Keith D, Pfau R (2010) Occurrence, reproduction, and population genetics of the estuarine mud crab, Rhithropanopeus harrisii (Gould) (Decapoda, Panopidae) in Texas freshwater reservoirs. Crustaceana 83:493–505. doi: 10.1163/001121610X492148 CrossRefGoogle Scholar
  9. Colautti RI, Lau JA (2015) Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol 24:1999–2017. doi: 10.1111/mec.13162 CrossRefGoogle Scholar
  10. Costlow JJ, Bookhout CG, Monroe RT (1966) Studies on the larval development of the crab, Rhithropanopeus harrisii (Gould). The effect of salinity and temperature on larval development. Physiol Zool 39:81–100CrossRefGoogle Scholar
  11. Cronin TW (1982) Estuarine retention of larvae of the crab Rhithropanopeus harrisii. Estuar Coast Shelf Sci 15:207–220. doi: 10.1016/0272-7714(82)90028-2 CrossRefGoogle Scholar
  12. Cronin TW, Forward RB (1986) Vertical migration cycles of crab larvae and their role in larval dispersal. Bull Mar Sci 39:192–201Google Scholar
  13. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Écoscience 12:316–329. doi: 10.2980/i1195-6860-12-3-316.1 CrossRefGoogle Scholar
  14. Davey J, Hohenlohe P, Etter P, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. doi: 10.1038/nrg3012 CrossRefGoogle Scholar
  15. Deangelis MM, Wang DG, Hawkins TL (1995) Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res 23:4742–4743. doi: 10.1093/nar/23.22.4742 CrossRefGoogle Scholar
  16. Demel K (1953) New species of Baltic Sea fauna. Kosmos 1:105–106Google Scholar
  17. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi: 10.1111/j.1365-294X.2007.03538.x CrossRefGoogle Scholar
  18. Dlugosch KM, Anderson SR, Braasch J, Cang AF, Gillette HD (2015) The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 24:2095–2111. doi: 10.1111/mec.13183 CrossRefGoogle Scholar
  19. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  20. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. doi: 10.1371/journal.pone.0019379 CrossRefGoogle Scholar
  21. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  22. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  23. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587. doi: 10.1111/j.1471-8286.2007.01758.x Google Scholar
  24. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993. doi: 10.1534/genetics.108.092221 CrossRefGoogle Scholar
  25. Forsström T, Fowler AE, Manninen I, Vesakoski O (2015) An introduced species meets the local fauna: predatory behavior of the crab Rhithropanopeus harrisii in the Northern Baltic Sea. Biol Invasions 17:2729–2741. doi: 10.1007/s10530-015-0909-0 CrossRefGoogle Scholar
  26. Fowler AE, Forsström T, von Numers M, Vesakoski O (2013) The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized Northern Baltic Sea: distribution and ecology. Aquat Invasions 8:89–96. doi: 10.3391/ai.2013.8.1.10 CrossRefGoogle Scholar
  27. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486. doi: 10.1093/oxfordjournals.jhered.a111627 CrossRefGoogle Scholar
  28. Hecht BC, Campbell NR, Holecek DE, Narum SR (2013) Genome-wide association reveals genetic basis for the propensity to migrate in wild populations of rainbow and steelhead trout. Mol Ecol 22:3061–3076. doi: 10.1111/mec.12082 CrossRefGoogle Scholar
  29. Hegele-Drywa J, Normant M (2014) Non-native crab Rhithropanopeus harrisii (Gould, 1984)—a new component of the benthic communities in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia 56:125–139. doi: 10.5697/oc.56-1.125 CrossRefGoogle Scholar
  30. Hegele-Drywa J, Thiercelin N, Schubart CD, Normant-Saremba M (2015) Genetic diversity of the non-native crab Rhithropanopeus harrisii (Brachyura: Panopeidae) in the Polish coastal waters—an example of patchy genetic diversity at a small geographic scale. Oceanol Hydrobiol Stud 44:305–315. doi: 10.1515/ohs-2015-0029 CrossRefGoogle Scholar
  31. HELCOM (2015) BALSAM PROJECT—WORK PACKAGE 4: testing monitoring methods for non-indigenous species in Baltic portsGoogle Scholar
  32. Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, Poss ML, Reed LK, Storfer A, Whitlock MC (2016) Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat 188:379–397. doi: 10.1086/688018 CrossRefGoogle Scholar
  33. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. doi: 10.1093/bioinformatics/btm233 CrossRefGoogle Scholar
  34. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi: 10.1186/1471-2156-11-94 CrossRefGoogle Scholar
  35. Jormalainen V, Gagnon K, Sjöroos J, Rothäusler E (2016) The invasive mud crab enforces a major shift in a rocky littoral invertebrate community of the Baltic Sea. Biol Invasions 18:1409–1419. doi: 10.1007/s10530-016-1090-9 CrossRefGoogle Scholar
  36. Kesäniemi JE, Mustonen M, Boström C, Hansen BW, Knott EK (2014) Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity. BMC Evol Biol 14:12. doi: 10.1186/1471-2148-14-12 CrossRefGoogle Scholar
  37. Kotta J, Ojaveer H (2012) Rapid establishment of the alien crab Rhithropanopeus harrisii (Gould) in the Gulf of Riga. Est J Ecol 61:293–298. doi: 10.3176/eco.2012.4.04 CrossRefGoogle Scholar
  38. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923 CrossRefGoogle Scholar
  39. Laughlin RB, French W (1989a) Interactions between temperature and salinity during brooding on subsequent zoeal development of the mud crab Rhithropanopeus harrisii. Mar Biol 102:377–386CrossRefGoogle Scholar
  40. Laughlin RB, French W (1989b) Differences in responses to factorial combinations of temperature and salinity by zoeae from two geographically isolated populations of the mud crab Rhithropanopeus harrisii. Mar Biol 102:387–395CrossRefGoogle Scholar
  41. Lawson Handley LJ, Estoup A, Evans DM, Thomas CE, Lombaert E, Facon B, Aebi A, Roy HE (2011) Ecological genetics of invasive alien species. Biocontrol 56:409–428. doi: 10.1007/s10526-011-9386-2 CrossRefGoogle Scholar
  42. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. doi: 10.1093/bioinformatics/btr509 CrossRefGoogle Scholar
  43. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi: 10.1093/bioinformatics/btp352 CrossRefGoogle Scholar
  44. Lischer HEL, Excoffier L (2012) PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28:298–299. doi: 10.1093/bioinformatics/btr642 CrossRefGoogle Scholar
  45. Moody KN, Hunter SN, Childress MJ, Blob RW, Schoenfuss HL, Blum MJ, Ptacek MB (2015) Local adaptation despite high gene flow in the waterfall-climbing Hawaiian goby, Sicyopterus stimpsoni. Mol Ecol 24:545–563. doi: 10.1111/mec.13016 CrossRefGoogle Scholar
  46. Myrand B, Tremblay R, Sévigny J-M (2002) Selection against blue mussels (Mytilus edulis L.) homozygotes under various stressful conditions. J Hered 93:238–248. doi: 10.1093/jhered/93.4.238 CrossRefGoogle Scholar
  47. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution (N Y) 29:1–10Google Scholar
  48. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358. doi: 10.1093/bioinformatics/12.4.357 Google Scholar
  49. Palomar G, Ahmad F, Vasemägi A, Matsuba C, Nicieza AG, Cano JM (2017) comparative high-density linkage mapping reveals conserved genome structure but variation in levels of heterochiasmy and location of recombination cold spots in the common Frog. G3. G3 Genes Genomes Genet 7:637–645. doi: 10.1534/g3.116.036459 Google Scholar
  50. Petersen C (2006) Range expansion in the northeast Pacific by an estuary mud crab—a molecular study. Biol Invasions 8:565–576. doi: 10.1007/s10530-005-0160-1 CrossRefGoogle Scholar
  51. Projecto-Garcia J, Cabral H, Schubart CD (2010) High regional differentiation in a North American crab species throughout its native range and invaded European waters: a phylogeographic analysis. Biol Invasions 12:253–263. doi: 10.1007/s10530-009-9447-y CrossRefGoogle Scholar
  52. Pukk L, Ahmad F, Hasan S, Kisand V, Gross R, Vasemägi A (2015) Less is more: extreme genome complexity reduction with ddRAD using Ion Torrent semiconductor technology. Mol Ecol Resour 15:1145–1152. doi: 10.1111/1755-0998.12392 CrossRefGoogle Scholar
  53. Rius M, Turon X, Bernardi G, Volckaert FAM, Viard F (2015) Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes. Biol Invasions 17:869–885. doi: 10.1007/s10530-014-0792-0 CrossRefGoogle Scholar
  54. Roche DR, Torchin ME (2007) Established population of the North American Harris mud crab, Rhithropanopeus harrisii (Gould 1841) (Crustacea: Brachyura: Xanthidae) in the Panama Canal. Aquat Invasions 2:155–161. doi: 10.3391/ai.2007.2.3.1 CrossRefGoogle Scholar
  55. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. doi: 10.1016/j.tree.2007.07.002 CrossRefGoogle Scholar
  56. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  57. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefGoogle Scholar
  58. Ruiz GM, Carlton JT, Grosholz ED, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632. doi: 10.1093/icb/37.6.621 CrossRefGoogle Scholar
  59. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454 Google Scholar
  60. Sherman CDH, Lotterhos KE, Richardson MF, Tepolt CK, Rollins LA, Palumbi SR, Miller AD (2016) What are we missing about marine invasions? Filling in the gaps with evolutionary genomics. Mar Biol 163:1–24. doi: 10.1007/s00227-016-2961-4 CrossRefGoogle Scholar
  61. Tanguy A, Castro NF, Marhic A, Moraga D (1999) Effects of an organic pollutant (Tributyltin) on genetic structure in the pacific oyster Crassostrea gigas. Mar Pollut Bull 38:550–559CrossRefGoogle Scholar
  62. Tepolt CK, Palumbi SR (2015) Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader. Mol Ecol 24:4145–4158. doi: 10.1111/mec.13294 CrossRefGoogle Scholar
  63. Turoboyski K (1973) Biology and ecology of the crab Rhithropanopeus harrisii ssp. tridentatus. Mar Biol 23:303–313. doi: 10.1007/BF00389338 CrossRefGoogle Scholar
  64. Uller T, Leimu R (2011) Founder events predict changes in genetic diversity during human-mediated range expansions. Glob Chang Biol 17:3478–3485. doi: 10.1111/j.1365-2486.2011.02509.x CrossRefGoogle Scholar
  65. Vasemägi A, Primmer CR (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Mol Ecol 14:3623–3642. doi: 10.1111/j.1365-294X.2005.02690.x CrossRefGoogle Scholar
  66. Welsh AB, Baerwald MR, Friday M, May B (2014) The effect of multiple spawning events on cohort genetic diversity of lake sturgeon (Acipenser fulvescens) in the Kaministiquia River. Environ Biol Fishes 98:755–762. doi: 10.1007/s10641-014-0309-9 CrossRefGoogle Scholar
  67. Williams A (1984) Shrimps, lobsters, and crabs of the Atlantic coast of the eastern United States, Maine to Florida. Smithsonian Institution Press, Washington, DCGoogle Scholar
  68. Wolff T (1954) Occurrence of two east American species of crabs in European waters. Nature 174:188–189CrossRefGoogle Scholar
  69. Wolff WJ (2005) Non-indigenous marine and estuarine species in The Netherlands. Zool Meded 79:1–116Google Scholar
  70. Zenger KR, Richardson BJ, Vachot-Griffin AM (2003) A rapid population expansion retains genetic diversity within European rabbits in Australia. Mol Ecol 12:789–794. doi: 10.1046/j.1365-294X.2003.01759.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of TurkuTurkuFinland
  2. 2.Department of Aquaculture, Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia

Personalised recommendations