Skip to main content

Advertisement

Log in

Ecological and commercial implications of temporal and spatial variability in the composition of pigments and fatty acids in five Irish macroalgae

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Seaweed habitats are characterised by constantly fluctuating environmental conditions which can influence the biochemical composition of species. To quantify the natural variability in concentrations and composition of pigments and fatty acids, a seasonal and spatial analysis of ecologically and economically important seaweed species (Fucus serratus, Ascophyllum nodosum, Himanthalia elongata, Laminaria digitata and Palmaria palmata) from Ireland was undertaken. Results revealed both common and species-specific patterns in seasonal and spatial algal composition. Generally, pigment concentrations decreased during summer months and were associated with a higher ratio of xanthophylls to chlorophylls. A similar response was observed regarding the proportions of polyunsaturated fatty acids (PUFA) which also decreased during summer. Concentrations in total fatty acids (TFA) revealed two distinct patterns in the five species investigated. In the two fucoid species, an increase in TFA during summer months was positively correlated with high proportions of monounsaturated fatty acids, implying an accumulation of storage lipids; in the remaining three species, proportions of PUFA were highest during winter and generally followed the seasonal trends of TFA. On a larger, geographical, scale, results demonstrated an influence of sampling location on pigments and fatty acids. Results highlight the complexity of interacting seasonal, spatial and species-specific drivers determining the biochemical composition of seaweeds which influences their value as food source and should be considered when natural stocks are harvested for high-value commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Hasan RH, Hantash FM, Radwan SS (1991) Enriching marine macroalgae with eicosatetraenoic (arachidonic) and eicosapentaenoic acids by chilling. Appl Microbiol Biotechnol 35:530–535

    Article  CAS  Google Scholar 

  • Ammermann J (2001) Determination of orthophosphate in seawaters by flow injection analysis QuikChem® Method 31-115-01-1-ILachat Instruments Methods Journal Lachat Intstruments

  • Arunkumar K, Sivakumar SR (2012) Seasonal influence on bioactivity of seaweeds against plant pathogenic bacteria Xanthomonas axonopodis pv. citri (Hasse) Vauterin et al. Afr J Microbiol Res 6:4324–4331. doi:10.5897/ajmr11.977

    Google Scholar 

  • Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Freshw Res 36:785–792

    Article  CAS  Google Scholar 

  • Bidigare RR, van Heukelem L, Trees CC (2005) Analysis of algal pigments by high-performance-liquid-chromatography. In: Andersen (ed) Algal culturing techniques. Academic Press, London, pp 327–345

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol Plant Mol Biol 28:355–377. doi:10.1146/annurev.pp.28.060177.002035

    Article  CAS  Google Scholar 

  • Charpy-Roubaud C, Sournia A (1990) The comparative estimation of phytoplanktonic microphytobenthic and macrophytobenthic primary production in the oceans. Mar Microb Food Webs 4:31–58

    Google Scholar 

  • Demmig-Adams B (1998) Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol 39:474–482

    Article  CAS  Google Scholar 

  • Ederington MC, McManus GB, Harvey HR (1995) Trophic transfer of fatty-acids, sterols, and a triterpenoid alcohol between bacteria, a ciliate, and the copepod Acartia-tonsa. Limnol Oceanogr 40:860–867

    Article  CAS  Google Scholar 

  • Eggert A (2012) Seaweed responses to temperature. In: Wienke C, Bischof K (eds) Seaweed biology. Springer, New York, pp 47–66

    Chapter  Google Scholar 

  • Esteban R, Barrutia O, Artetxe U, Fernandez-Marin B, Hernandez A, Garcia-Plazaola JI (2015) Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. New Phytol 206:268–280. doi:10.1111/nph.13186

    Article  CAS  Google Scholar 

  • Faes VA, Viejo RM (2003) Structure and dynamics of a population of Palmaria palmata (Rhodophyta) in northern Spain. J Phycol 39:1038–1049

    Article  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • FloresMoya A, Fernandez JA, Niell FX (1995) Seasonal variations of photosynthetic pigments, total C, N, and P content, and photosynthesis in Phyllariopsis purpurascens (Phaeophyta) from the Strait of Gibraltar. J Phycol 31:867–874

    Article  CAS  Google Scholar 

  • Galloway AWE, Eisenlord ME, Dethier MN, Holtgrieve GW, Brett MT (2014) Quantitative estimates of isopod resource utilization using a Bayesian fatty acid mixing model. Mar Ecol Prog Ser 507:219–232. doi:10.3354/meps10860

    Article  Google Scholar 

  • Gombos Z, Wada H, Murata N (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane-lipids—a mechanism of chilling tolerance. Proc Natl Acad Sci USA 91:8787–8791. doi:10.1073/pnas.91.19.8787

    Article  CAS  Google Scholar 

  • Gosch BJ, Paul NA, de Nys R, Magnusson M (2014) Seasonal and within-plant variation in fatty acid content and composition in the brown seaweed Spatoglossum macrodontum (Dictyotales, Phaeophyceae). J Appl Phycol 27:387–398

  • Gosch BJ, Lawton RJ, Paul NA, Nys Rd, Magnusson M (2015a) Environmental effects on growth and fatty acids in three isolates of Derbesia tenuissima (Bryopsidales, Chlorophyta). Algal Res 9:82–93

  • Gosch BJ, Paul NA, de Nys R, Magnusson M (2015b) Spatial, seasonal, and within-plant variation in total fatty acid content and composition in the brown seaweeds Dictyota bartayresii and Dictyopteris australis (Dictyotales, Phaeophyceae). J Appl Phycol 27:1607–1622 doi:10.1007/s10811-014-0474-4

  • Goss R, Wilhelm C (2010) Lipids in algae, lichens and mosses. In: Wada H, Murata N (eds) Lipids in photosynthesis. Springer, New York, pp 117–137

    Google Scholar 

  • Guschina IA, Harwood JL (2009) Algal lipids and effect of the environment on their biochemistry. Lipids in aquatic ecosystems. Springer, New York. doi:10.1007/978-0-387-89366-2_1

    Google Scholar 

  • Hafting JT et al (2015) Prospects and challenges for industrial production of seaweed bioactives. J Phycol 51:821–837

    Article  CAS  Google Scholar 

  • Hanelt D, Figueroa FL (2012) Physiological and photomorphogenic effects of light on marine macrophytes. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, New York, pp 3–23

    Chapter  Google Scholar 

  • Havaux M, Tardy F (1997) Photoacoustically monitored thermal energy dissipation and xanthophyll cycle carotenoids in higher plant leaves. J Photochem Photobiol B 40:68–75

    Article  CAS  Google Scholar 

  • Hotimchenko S (2002) Fatty acid composition of algae from habitats with varying amounts of illumination. Russ J Mar Biol 28:218–220

    Article  CAS  Google Scholar 

  • Hurd CL, Harrison PJ, Bischof K, Lobban CS (2014) Seaweed ecology and physiology, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Khotimchenko SV (2002) The fatty acid composition of marine algae from localities with different light intensities. Biol Morya (Vladivostok) 28:232–234

    Google Scholar 

  • Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66:73–79. doi:10.1016/j.phytochem.2004.10.024

    Article  CAS  Google Scholar 

  • Kim MK, Dubacq JP, Thomas JC, Giraud G (1996) Seasonal variations of triacylglycerols and fatty acids in Fucus serratus. Phytochemistry 43:49–55. doi:10.1016/0031-9422(96)00243-9

    Article  CAS  Google Scholar 

  • Lee AG (2000) Membrane lipids: it’s only a phase. Curr Biol 10:R377–R380. doi:10.1016/s0960-9822(00)00477-2

    Article  CAS  Google Scholar 

  • Lüning K, Yarish C, Kirkman H (1990) Seaweeds: their environment, biogeography, and ecophysiology. Wiley, New York

    Google Scholar 

  • Martinez B, Rico JM (2002) Seasonal variation of P content and major N pools in Palmaria palmata (Rhodophyta). J Phycol 38:1082–1089. doi:10.1046/j.1529-8817.2002.01217.x

    Article  CAS  Google Scholar 

  • McCauley JI, Meyer BJ, Winberg PC, Ranson M, Skropeta D (2015) Selecting Australian marine macroalgae based on the fatty acid composition and anti-inflammatory activity. J Appl Phycol 27:2111–2121

    Article  CAS  Google Scholar 

  • Moon BY, Higashi SI, Gombos Z, Murata N (1995) Unsaturation of the membrane-lipids of chloroplasts stabilises the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92:6219–6223. doi:10.1073/pnas.92.14.6219

    Article  CAS  Google Scholar 

  • Müller-Navarra D (1995) Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch Hydrobiol 132:297–297

    Google Scholar 

  • Nelson MM, Phleger CF, Nichols PD (2002) Seasonal lipid composition in macroalgae of the northeastern Pacific Ocean. Bot Mar 45:58–65. doi:10.1515/bot.2002.007

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970. doi:10.1105/tpc.7.7.957

    Article  CAS  Google Scholar 

  • Robles-Centeno PO, Ballantine DL, Gerwick WH (1996) Dynamics of antibacterial activity in three species of Caribbean marine algae as a function of habitat and life history. Hydrobiologia 326:457–462

    Article  Google Scholar 

  • Sampath-Wiley P, Neefus CD, Jahnke LS (2008) Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis Kutzing (Rhodophyta, Bangiales). J Exp Mar Biol Ecol 361:83–91. doi:10.1016/j.jembe.2008.05.001

    Article  CAS  Google Scholar 

  • Schmid M, Stengel DB (2015) Intra-thallus differentiation of fatty acid and pigment profiles in some temperate Fucales and Laminariales. J Phycol 51:25–36

    Article  CAS  Google Scholar 

  • Schmid M, Guihéneuf F, Stengel DB (2014) Fatty acid contents and profiles of 16 macroalgae collected from the Irish coast at two seasons. J Appl Phycol 26:451–463. doi:10.1007/s10811-013-0132-2

    Article  CAS  Google Scholar 

  • Schmid M, Guihéneuf F, Stengel DB (2016) Evaluation of food grade solvents for lipid extraction and impact of storage temperature on fatty acid composition of edible seaweeds Laminaria digitata (Phaeophyceae) and Palmaria palmata (Rhodophyta). Food Chem 208:161–168

    Article  CAS  Google Scholar 

  • Schmid M, Guihéneuf F, Stengel DB (2017) Plasticity and remodelling of lipids support acclimation potential in two species of low-intertidal macroalgae, Fucus serratus (Phaeophyceae) and Palmaria palmata. Algal Res (in press)

  • Sears JR, Wilce RT (1975) Sublittoral, benthic marine algae of southern cape cod and adjacent islands—seasonal periodicity, associations, diversity, and floristic composition. Ecol Monogr 45:337–365. doi:10.2307/1942411

    Article  Google Scholar 

  • Smith P, Bogren K (2001) Determination of nitrate and/or nitrite in brackish or seawater by flow injection analysis colorimeter: QuikChem Method 31-107-04-1-E Methods manual Lachat Instruments

  • Stengel DB, Dring MJ (1998) Seasonal variation in the pigment content and photosynthesis of different thallus regions of Ascophyllum nodosum (Fucales, Phaeophyta) in relation to position in the canopy. Phycologia 37:259–268. doi:10.2216/i0031-8884-37-4-259.1

    Article  Google Scholar 

  • Stengel DB, Wilkes RJ, Guiry MD (1999) Seasonal growth and recruitment of Himanthalia elongata (Fucales, Phaeophycota) in different habitats on the Irish west coast. Eur J Phycol 34:213–221. doi:10.1017/s0967026299002115

    Google Scholar 

  • Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29:483–501. doi:10.1016/j.biotechadv.2011.05.016

    Article  CAS  Google Scholar 

  • Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty-acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692. doi:10.1111/j.0022-3646.1989.00686.x

    Article  CAS  Google Scholar 

  • Thompson PA, Guo MX, Harrison PJ, Whyte JNC (1992) Effects of variation in temperature on the fatty acid composition of 8 species of marine phytoplankton. J Phycol 28:488–497. doi:10.1111/j.0022-3646.1992.00488.x

    Article  CAS  Google Scholar 

  • Tomarken AJ, Serlin RC (1986) Comparison of ANOVA alternatives under variance heterogeneity and specific noncentrality structures. Psychol Bull 99:90–99. doi:10.1037//0033-2909.99.1.90

    Article  Google Scholar 

  • Venkatesalu V, Sundaramoorthy P, Anantharaj M, Chandrasekaran M, Senthilkumar A (2012) Seasonal variation on fatty acid composition of some marine macro algae from Gulf of Mannar Marine Biosphere Reserve, Southeast coast of India Indian. J Geo Mar Sci 41:442–450

    CAS  Google Scholar 

  • Wright SW, Jeffrey SW, Mantoura RFC, Llewellyn CA, Bjornland T, Repeta D, Welschmeyer N (1991) Imroved HPLC method for the analysis of chlorophylls and carotenoids from marine-phytoplankton. Mar Ecol Prog Ser 77:183–196. doi:10.3354/meps077183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NutraMara, the Irish Marine Functional Foods Research Initiative funded by the Irish Marine Institute and the Department of Agriculture, Food and the Marine (DAFM). The authors thank Kim Blaides for assistance during chemical analysis of the samples and Udo Nitschke for advice and assistance during the study. The authors thank the two anonymous reviewers for their valuable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schmid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Responsible Editor: M.Y. Roleda.

Reviewed by Undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmid, M., Guihéneuf, F. & Stengel, D.B. Ecological and commercial implications of temporal and spatial variability in the composition of pigments and fatty acids in five Irish macroalgae. Mar Biol 164, 158 (2017). https://doi.org/10.1007/s00227-017-3188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3188-8

Navigation