Skip to main content
Log in

High-Resolution Melting of 18S rDNA sequences (18S-HRM) for discrimination of bivalve’s species at early juvenile stage: application to a spat survey

  • Method
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

It is particularly difficult to identify bivalve species at early development stages (larvae and spat) by morphological examination. Targeting genetic marker commonly used for species identification, we developed a cheap and user friendly tool for bivalve identification through High-Resolution Melting (HRM) analysis. Based on the polymorphism of the nuclear 18S ribosomal RNA gene among 11 orders of bivalve, the 18S-HRM method allowed discriminating species of the Ostreida, Mytilida and Pectinida orders. In this study, this method proved to be a very sensitive tool able to authenticate one species that differed by only one mutation from another one. We applied the method by identifying bivalve species in spat collections from different benthic substrates moored at subtidal and intertidal areas in euhaline conditions. This field survey showed that the settlement of the invasive species Crassostrea gigas was limited vertically to intertidal substrates. In conclusion, the 18S-HRM analysis is a fast, closed-tube method with high resolution and cost effectiveness, and is thus a good alternative method to identify bivalve species. This HRM assay can by applied for species identification of bivalves in the context of ecological management as well as food traceability for bivalves with economical interests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbadi M, Marciano S, Tosi F, De Battisti C, Panzarin V, Arcangeli G, Cattoli G (2016) Species identification of bivalve molluscs by Pyrosequencing™. J Sci Food Agric 97(2):512–519

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, p 447

  • Barco A, Raupach MJ, Laakmann S, Neumann H, Knebelsberger T (2016) Identification of North Sea molluscs with DNA barcoding. Mol Ecol Resour 16:288–297

    Article  CAS  Google Scholar 

  • Boudry P, Heurtebise S, Collet B, Cornette F, Gérard A (1998) Differentiation between populations of the Portuguese oyster, Crassostrea angulata (Lamark) and the Pacific oyster, Crassostrea gigas (Thunberg), revealed by mtDNA RFLP analysis. J Exp Mar Biol Ecol 226:279–291

    Article  Google Scholar 

  • Buddhakosai W, Sukmak M, Klinsawat W, Duangchantrasiri S, Simcharoen A, Siriaroonrat B, Wajjwalku W (2014) Discrimination of tiger using a novel High Resolution Melting (HRM) and multiplex SNP-specific HRM (MSS-HRM) technique. Forensic Sci Int Genet 13:30–33

    Article  CAS  Google Scholar 

  • Buroker NE (1985) Evolutionary patterns in the family Ostreidae: larviparity vs. oviparity. J Exp Mar Biol Ecol 90:233–247

    Article  Google Scholar 

  • Buroker NE, Hershberger WK, Chew KK (1979) Population genetics of the family ostreidae. I. Intraspecific studies of Crassostrea gigas and Saccostrea commercialis. Mar Biol 54:157–169

    Article  Google Scholar 

  • Calves I, Lavergne E, Meistertzheim AL, Charrier G, Cabral H, Guinand B, Quiniou L, Laroche J (2013) Genetic structure of the European flounder (Platichthys flesus) considering the southern limit of the species’ range and the potential impact of chemical stress. Mar Ecol Prog Ser 472:257–273

    Article  CAS  Google Scholar 

  • Cardoso J, Langlet D, Loff JF, Martins AR, Witte JIJ, Santos PT, van der Veer HW (2007) Spatial variability in growth and reproduction of the Pacific oyster Crassostrea gigas (Thunberg, 1793) along the west European coast. J Sea Res 57:303–315

    Article  Google Scholar 

  • Carranza S, Giribet G, Ribera C, Baguñà J, Riutort M (1996) Evidence that two types of 18S rDNA coexist in the genome of Dugesia (Schmidtea) mediterranea (Platyhelminthes, Turbellaria, Tricladida). Mol Biol Evol 13:824–832

    Article  CAS  Google Scholar 

  • Cousins MM, Ou SS, Wawer MJ, Munshaw S, Swan D, Magaret C, Mullis CE, Serwadda D, Porcella SF, Gray RH, Quinn TC, Donnell D, Eshleman SH, Redd AD (2012) Comparison of a High Resolution Melting (HRM) assay to next generation sequencing for analysis of HIV diversity. J Clin Microbiol 50:3054–3059

    Article  Google Scholar 

  • Crease TJ, Lynch M (1991) Ribosomal DNA variation in daphnia-pulex. Mol Biol Evol 8:620–640

    CAS  Google Scholar 

  • Crease TJ, Taylor DJ (1998) The origin and evolution of variable-region helices in V4 and V7 of the small-subunit ribosomal RNA of branchiopod crustaceans. Mol Biol Evol 15:1430–1446

    Article  CAS  Google Scholar 

  • Cristescu ME (2014) From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. Trends Ecol Evol 29:566–571

    Article  Google Scholar 

  • Dias P, Piertney S, Snow M, Davies I (2011) Survey and management of mussel Mytilus species in Scotland. Hydrobiologia 670:127–140

    Article  Google Scholar 

  • Diederich S, Nehls G, van Beusekom JEE, Reise K (2005) Introduced Pacific oysters (Crassostrea gigas) in the northern Wadden Sea: invasion accelerated by warm summers? Helgol Mar Res 59:97–106

    Article  Google Scholar 

  • Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Druml B, Cichna-Markl M (2014) High Resolution Melting (HRM) analysis of DNA—its role and potential in food analysis. Food Chem 158:245–254

    Article  CAS  Google Scholar 

  • Espiñeira M, González-Lavín N, Vieites JM, Santaclara FJ (2009) Development of a method for the genetic identification of commercial bivalve species based on mitochondrial 18S rRNA sequences. J Agric Food Chem 57:495–502

    Article  Google Scholar 

  • Frischer ME, Hansen AS, Wyllie JA, Wimbush J, Murray J, Nierzwicki-Bauer SA (2002) Specific amplification of the 18S rRNA gene as a method to detect zebra mussel (Dreissena polymorpha) larvae in plankton samples. Hydrobiologia 487:33–44

    Article  CAS  Google Scholar 

  • Ganopoulos I, Madesis P, Darzentas N, Argiriou A, Tsaftaris A (2012) Barcode High Resolution Melting (Bar-HRM) analysis for detection and quantification of “Fava Santorinis” (Lathyrus clymenum) adulterants. Food Chem 133:505–512

    Article  CAS  Google Scholar 

  • Gonzalez IL, Gorski JL, Campen TJ, Dorney DJ, Erickson JM, Sylvester JE, Schmickel RD (1985) Variation among human 28S ribosomal RNA genes. Proc Natl Acad Sci USA 82:7666–7670

    Article  CAS  Google Scholar 

  • Goulletquer P, Bachelet G, Sauriau PG, Noel P (2002) Open Atlantic coast of Europe—a century of introduced species into French waters. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe: distribution, impacts and management. Kluwer, Dordrecht, pp 276–290

    Chapter  Google Scholar 

  • Grizel H, Heral M (1991) Introduction into France of the Japanese oyster (Crassostrea gigas). J Int pour l’exploration la Mer 47:399–403

    Article  Google Scholar 

  • Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6(2):e1000834

    Article  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Henzler C, Hoaglund E, Gaines S (2010) FISH-CS—a rapid method for counting and sorting species of marine zooplankton. Mar Ecol Prog Ser 410:1–11

    Article  CAS  Google Scholar 

  • Hoeh WR, Blakley KH, Brown WM (1991) Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. Science 251:1488–1490

    Article  CAS  Google Scholar 

  • Holland PWH, Hacker AM, Williams NA (1991) A Molecular analysis of the phylogenetic affinities of Saccoglossus cambrensis Brambell & Cole (Hemichordata). Philos Trans R Soc B Biol Sci 332:185–189

    Article  CAS  Google Scholar 

  • Hollander J, Blomfeldt J, Carlsson P, Strand Å (2015) Effects of the alien Pacific oyster (Crassostrea gigas) on subtidal macrozoobenthos communities. Mar Biol 162:547–555

    Article  Google Scholar 

  • Hu YP, Fuller SC, Castagna M, Vrijenhoek RC, Lutz RA (1993) Shell morphology and identification of early-life history stages of congeneric species of Crassostrea and Ostrea. J Mar Biol Assoc UK 73:471–496

    Article  Google Scholar 

  • Keller I, Veltsos P, Nichols RA (2008) The frequency of rDNA variants within individuals providences evidence of population history and gene flow across a grasshopper hybrid zone. Evolution 62:833–844

    Article  CAS  Google Scholar 

  • Kemppainen P, Panova M, Hollander J, Johannesson K (2009) Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods. J Evol Biol 22:2000–2011

    Article  CAS  Google Scholar 

  • Kennedy RJ, Roberts D (1999) A survey of the current status of the flat oyster Ostrea edulis in Strangford Lough, Northern Ireland, with a view to the restoration of its oyster beds. Proc R Irish Acad 99B:79–88

    Google Scholar 

  • Krieger J, Fuerst PA (2004) Characterization of nuclear 18S rRNA gene sequence diversity and expression in an individual lake sturgeon (Acipenser fulvescens). J Appl Ichthyol 20:433–439

    Article  CAS  Google Scholar 

  • Krieger J, Hett AK, Fuerst PA, Birstein VJ, Ludwig A (2006) Unusual intraindividual variation of the nuclear 18S rRNA gene is widespread within the Acipenseridae. J Hered 97:218–225

    Article  CAS  Google Scholar 

  • Larsen JB, Frischer ME, Rasmussen LJ, Hansen BW (2005) Single-step nested multiplex PCR to differentiate between various bivalve larvae. Mar Biol 146:1119–1129

    Article  CAS  Google Scholar 

  • Larsen LA, Jespersgaard C, Andersen PS (2007) Single-strand conformation polymorphism analysis using capillary array electrophoresis for large-scale mutation detection. Nat Protoc 2:1458–1466

    Article  CAS  Google Scholar 

  • Lavergne E, Calves I, Meistertzheim AL, Charrier G, Zajonz U, Laroche J (2014) Complex genetic structure of a euryhaline marine fish in temporarily open/closed estuaries from the wider Gulf of Aden. Mar Biol 161:113–1126

    Article  Google Scholar 

  • Layton KKS, Martel AL, Hebert PDN (2014) Patterns of DNA barcode variation in Canadian marine molluscs. PLoS ONE 9:e95003

    Article  Google Scholar 

  • Le Goff-Vitry MC, Chipman AD, Comtet T (2007) In situ hybridization on whole larvae: a novel method for monitoring bivalve larvae. Mar Ecol Prog Ser 343:161–172

    Article  Google Scholar 

  • Lejart M, Hily C (2011) Differential response of benthic macrofauna to the formation of novel oyster reefs (Crassostrea gigas, Thunberg) on soft and rocky substrate in the intertidal of the Bay of Brest, France. J Sea Res 65:84–93

    Article  Google Scholar 

  • Livi S, Cordisco C, Damiani C, Romanelli M, Crosetti D (2006) Identification of bivalve species at an early developmental stage through PCR-SSCP and sequence analysis of partial 18S rDNA. Mar Biol 149:1149–1161

    Article  CAS  Google Scholar 

  • Medeiros-Bergen DE, Olson RR, Conroy J, Kocher TD (1995) Distribution of holothurian larvae determined with species-specific genetic probes. Limnol Oceanogr 40:1225–1235

    Article  Google Scholar 

  • Meistertzheim AL, Calves I, Artigaud S, Friedman CS, Laroche J, Paillard C, Ferec C (2012) High Resolution Melting analysis for fast and cheap polymorphism screening of marine populations. Protoc Exch. doi:10.1038/protex.2012.015

    Google Scholar 

  • Meistertzheim AL, Calves I, Roussel V, Van Wormhoudt A, Laroche J, Huchette S, Paillard C (2014) New genetic markers to identify European resistant abalone to vibriosis revealed by High Resolution Melting analysis, a sensitive and fast approach. Mar Biol 161:1883–1893

    Article  CAS  Google Scholar 

  • Naue J, Hansmann T, Schmidt U (2014) High-resolution melting of 12S rRNA and cytochrome b DNA sequences for discrimination of species within distinct European animal families. PLoS One 9:e115575

    Article  Google Scholar 

  • Osathanunkul M, Madesis P, de Boer H (2015) Bar-HRM for authentication of plant-based medicines: evaluation of three medicinal products derived from Acanthaceae species. PLoS One 10:e0128476

    Article  Google Scholar 

  • Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends Ecol Evol 24:386–393

    Article  Google Scholar 

  • Radulovici AE, Archambault P, Dufresne F (2010) DNA barcodes for marine biodiversity: moving fast forward? Diversity 2:450–472

    Article  CAS  Google Scholar 

  • Sanchez A, Quinteiro J, Rey-Mendez M, Perez-Martin RI, Sotelo CG (2014) Identification and quantification of two species of oyster larvae using real-time PCR. Aquat Living Resour 27:135–145

    Article  Google Scholar 

  • Santos SR, Kinzie RA, Sakai K, Coffroth MA (2003) Molecular characterization of nuclear small subunit (ISS)-rDNA pseudogenes in a symbiotic dinoflagellate (Symbiodinium, Dinophyta). J Eukaryot Microbiol 50:417–421

    Article  CAS  Google Scholar 

  • Shen Y, Kang J, Chen W, He S (2016) DNA barcoding for the identification of common economic aquatic products in Central China and its application for the supervision of the market trade. Food Control 61:79–91

    Article  Google Scholar 

  • Simko I (2016) High-resolution dna melting analysis in plant research. Trends Plant Sci 21:528–537

    Article  CAS  Google Scholar 

  • Smaal A, Kater B, Wijsman J (2009) Introduction, establishment and expansion of the Pacific oyster Crassostrea gigas in the Oosterschelde (SW Netherlands). Helgol Mar Res 63:75–83

    Article  Google Scholar 

  • Song H, Buhay JE, Whiting MF, Crandall K (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci USA 105:13486–13491

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2016) Role of DNA barcoding in marine biodiversity assessment and conservation: an update. Saudi J Biol Sci 23:161–171

    Article  CAS  Google Scholar 

  • Troost K (2010) Causes and effects of a highly successful marine invasion: case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries. J Sea Res 64:145–165

    Article  Google Scholar 

  • Vadopalas B, Bouma JV, Jackels CR, Friedman CS (2006) Application of real-time PCR for simultaneous identification and quantification of larval abalone. J Exp Mar Biol Ecol 334:219–228

    Article  CAS  Google Scholar 

  • Wight NA, Suzuki J, Vadopalas B, Friedman CS (2009) Development and optimization of quantitative PCR assays to aid Ostrea lurida Carpenter 1864 restoration efforts. J Shellfish Res 28:33–41

    Article  Google Scholar 

  • Wittwer CT (2009) High-resolution DNA melting analysis: advancements and limitations. Hum Mutat 30:857–859

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sincere thanks are due to P.E. Galand for his helpful suggestions and for correcting the English and also to the two anonymous reviewers who carefully edited our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Leila Meistertzheim.

Ethics declarations

Funding

This research program was financially supported by the French national program PROGIG (Prolifération de Crassostrea gigas, LITEAU II, contract number CV 05000131).

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: O. Puebla.

Reviewed by undisclosed experts.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meistertzheim, AL., Héritier, L. & Lejart, M. High-Resolution Melting of 18S rDNA sequences (18S-HRM) for discrimination of bivalve’s species at early juvenile stage: application to a spat survey. Mar Biol 164, 133 (2017). https://doi.org/10.1007/s00227-017-3162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3162-5

Keywords

Navigation