Skip to main content

Advertisement

Log in

High pCO2 and elevated temperature reduce survival and alter development in early life stages of the tropical sea hare Stylocheilus striatus

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Elevated temperature (ocean warming) and reduced oceanic pH (ocean acidification) are products of increased atmospheric pCO2, and have been shown in many marine taxa to alter morphology, impede development, and reduce fitness. Here, we investigated the effects of high pCO2 and elevated temperature on developmental rate, hatching success, and veliger morphology of embryos of the tropical sea hare, Stylocheilus striatus. Exposure to high pCO2 resulted in significant developmental delays, postponing hatching by nearly 24 h, whereas exposure to elevated temperature (in isolation or in combination with high pCO2) resulted in accelerated development, with larvae reaching several developmental stages approximately 48 h in advance of controls. Hatching success was reduced by ~20 and 55% under high pCO2 and warming, respectively, while simultaneous exposure to both conditions resulted in a nearly additive 70% reduction in hatching. In addition to these ontological and lethal effects, exposure of embryos to climate change stressors resulted in significant morphological effects. Larval shells were nearly 40% smaller under high pCO2 and warming in isolation and up to 53% smaller under multi-stressor conditions. In general, elevated temperature had the largest impact on development, with temperature-effects nearly 3.5-times the magnitude of high pCO2-effects. These results indicate that oceanic conditions congruent with climate change predictions for the end of the twenty-first century suppress successful development in S. striatus embryos, potentially reducing their viability as pelagic larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson JT (1988) A review of size dependent survival during pre-recruit stages of fishes in relation to recuritment. J Northwest Atl Fish Sci 8:55–66

    Google Scholar 

  • Anger K (1987) The D0 threshold: a critical point in the larval development of decapod crustaceans. J Exp Mar Bio Ecol 108:15–30. doi:10.1016/0022-0981(87)90128-6

    Article  Google Scholar 

  • Breitburg DL, Salisbury J, Bernhard JM et al (2015) And on top of all that… Coping with ocean acidification in the midst of many stressors. Oceanography 28:48–61. doi:10.1017/CBO9781107415324.004

    Article  Google Scholar 

  • Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19:R602–R614. doi:10.1016/j.cub.2009.05.046

    Article  CAS  Google Scholar 

  • Busby MA, Stewart C, Miller CA et al (2013) Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics 29:656–657. doi:10.1093/bioinformatics/btt015

    Article  CAS  Google Scholar 

  • Byrne M, Przeslawski R (2013) Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr Comp Biol 53:582–596. doi:10.1093/icb/ict049

    Article  CAS  Google Scholar 

  • Carey N, Dupont SAM, Sigwart JD (2016) Sea hare Aplysia punctata (Mollusca : Gastropoda) can maintain shell calcification under extreme ocean acidification. Biol Bull 213(2):142–151

    Article  Google Scholar 

  • Cohen J (1992) A power primer. Psychol Bull 112:155–159. doi:10.1037/0033-2909.112.1.155

    Article  CAS  Google Scholar 

  • Davis AR, Coleman D, Broad A et al (2013) Complex responses of intertidal molluscan embryos to a warming and acidifying ocean in the presence of UV radiation. PLoS ONE 8(2). doi:10.1371/journal.pone.0055939

    Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672. doi:10.1073/pnas.0709472105

    Article  CAS  Google Scholar 

  • Dickson A (2010) Standards for ocean measurements. Oceanography 23:34–47. doi:10.5670/oceanog.2010.22.COPYRIGHT

    Article  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, British Columbia

    Google Scholar 

  • Dorey N, Lançon P, Thorndyke M, Dupont S (2013) Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Glob Chang Biol 19:3355–3367. doi:10.1111/gcb.12276

    Google Scholar 

  • Dupont S, Thorndyke MC (2009) Impact of CO2-driven ocean acidification on invertebrates early life-history—what we know, what we need to know and what we can do. Biogeosci Discuss 6:3109–3131. doi:10.5194/bgd-6-3109-2009

    Article  Google Scholar 

  • Dupont S, Havenhand J, Thorndyke W et al (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294. doi:10.3354/meps07800

    Article  CAS  Google Scholar 

  • Ellis RP, Bersey J, Rundle SD et al (2009) Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusata. Aquat Biol 5:41–48. doi:10.3354/ab00118

    Article  Google Scholar 

  • Fabry V, Seibel B, Feely R, Orr J (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi:10.1093/icesjms/fsn048

    Article  CAS  Google Scholar 

  • Ganachaud AS, Sen Gupta A, Orr JC et al (2011) Observed and expected changes to the tropical Pacific Ocean. In: Bell JD, Johnson JE, Hobday AJ (eds) Vulnerability of tropical Pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, Noumea, pp 101–188

    Google Scholar 

  • Garrido S, Ben-Hamadou R, Santos AMP et al (2015) Born small, die young: intrinsic, size-selective mortality in marine larval fish. Sci Rep 5:17065. doi:10.1038/srep17065

    Article  CAS  Google Scholar 

  • Gattuso J-P, Epitalon J-M, Lavigne H (2015) Seacarb: seawater carbonate chemistry with R. R package version 3.1.1, The Comprehensive R Archive Network. http://CRAN.R-project.org/package=seacarb. Accessed 06 Apr 2017

  • Gazeau F, Parker LM, Comeau S et al (2013) Impacts of ocean acidification on marine shelled molluscs. Mar Biol 160:2207–2245. doi:10.1007/s00227-013-2219-3

    Article  CAS  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi:10.1111/j.1461-0248.2005.00871.x

    Article  Google Scholar 

  • Harvey BP, Gwynn-Jones D, Moore PJ (2013) Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol 3:1016–1030. doi:10.1002/ece3.516

    Article  Google Scholar 

  • Hendriks IE, Duarte C, Álvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuar Coast Shelf Sci 86:157–164. doi:10.1016/j.ecss.2009.11.022

    Article  CAS  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York, p 466

    Google Scholar 

  • Hofmann GE, Smith JE, Johnson KS et al (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6:e28983. doi:10.1371/journal.pone.0028983

    Article  CAS  Google Scholar 

  • Horwitz R, Jackson M, Mills SC (2017) The embryonic life history of the tropical sea hare Stylocheilus striatus (Gastropoda: Opisthobranchia) under ambient and elevated ocean temperatures. PeerJ 5:e2956. doi:10.7717/peerj.2956

    Article  Google Scholar 

  • Houde ED (1989) Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish Bull 87:471–495

    Google Scholar 

  • IPCC 2014 Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi:10.1111/j.1461-0248.2010.01518.x

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim R et al (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896. doi:10.1111/gcb.12179

    Article  Google Scholar 

  • Kuffner IB, Paul VJ (2004) Effects of the benthic cyanobacterium Lyngbya majuscula on larval recruitment of the reef corals Acropora surculosa and Pocillopora damicornis. Coral Reefs 23:455–458. doi:10.1007/s00338-004-0416-8

    Article  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. doi:10.3354/meps07802

    Article  CAS  Google Scholar 

  • Leichter J (2015) MCR LTER: Coral reef: benthic water temperature, ongoing since 2005. In: nb-lter-mcr.1035.10. https://portal.lternet.edu/nis/mapbrowse?packageid=knb-lter-mcr.1035.10

  • Lucey NM, Lombardi C, DeMarchi L et al (2015) To brood or not to brood: are marine invertebrates that protect their offspring more resilient to ocean acidification? Sci Rep 5:12009. doi:10.1038/srep12009

    Article  Google Scholar 

  • Manly BFJ (2007) Randomization, bootstrap, and Monte Carlo methods in biology, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • Manríquez PH, Jara ME, Torres R et al (2014) Effects of ocean acidification on larval development and early post-hatching traits in Concholepas concholepas (loco). Mar Ecol Prog Ser 514:87–103. doi:10.3354/meps10951

    Article  Google Scholar 

  • Montory JA, Chaparro OR, Cubillos VM, Pechenik JA (2009) Isolation of incubation chambers during brooding: effect of reduced pH on protoconch development in the estuarine gastropod Crepipatella dilatata (Calyptraeidae). Mar Ecol Prog Ser 374:157–166. doi:10.3354/meps07780

    Article  Google Scholar 

  • Nedelec SL, Radford AN, Simpson SD et al (2014) Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate. Sci Rep 4:5891. doi:10.1038/srep05891

    Article  CAS  Google Scholar 

  • Nguyen HD, Doo SS, Soars NA, Byrne M (2012) Noncalcifying larvae in a changing ocean: warming, not acidification/hypercapnia, is the dominant stressor on development of the sea star Meridiastra calcar. Glob Chang Biol 18:2466–2476. doi:10.1111/j.1365-2486.2012.02714.x

    Article  Google Scholar 

  • Noisette F, Comtet T, Legrand E et al (2014) Does encapsulation protect embryos from the effects of ocean acidification? the example of Crepidula fornicata. PLoS ONE 9:1–11. doi:10.1371/journal.pone.0093021

    Article  Google Scholar 

  • Paganini AW, Miller NA, Stillman JH (2014) Temperature and acidification variability reduce physiological performance in the intertidal zone porcelain crab Petrolisthes cinctipes. J Exp Biol 217:3974–3980. doi:10.1242/jeb.109801

    Article  Google Scholar 

  • Pörtner HO, Bennett AF, Bozinovic F et al (2006) Trade-offs in thermal adaptation: the need for a molecular to ecological integration. Physiol Biochem Zool 79(2):295–313. doi:10.1086/499986

    Article  Google Scholar 

  • Pörtner H, Gutowska M, Ishimatsu A et al (2011) Effects of ocean acidification on nektonic organisms. In: Gattuso J, Hansson J (eds) Ocean acidification. Oxford University Press, Oxford, pp 154–175

    Google Scholar 

  • Schneider C, Rasband W, Eliceiri K (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  • Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301(80):65. doi:10.1126/science.1083073

    Article  CAS  Google Scholar 

  • Stillman JH, Armstrong E (2015) Genomics are transforming our understanding of responses to climate change. Bioscience 65:237–246. doi:10.1093/biosci/biu219

    Article  Google Scholar 

  • Stumpp M, Wren J, Melzner F et al (2011) CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol A: Mol Integr Physiol 160:331–340. doi:10.1016/j.cbpa.2011.06.022

    Article  CAS  Google Scholar 

  • Talmage SC, Gobler CJ (2011) Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of northwest Atlantic bivalves. PLoS ONE 6(10). doi:10.1371/journal.pone.0026941

  • Team RDC (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the heat on tropical animals. Science 320(80):1296–1297. doi:10.1126/science.1159328

    Article  CAS  Google Scholar 

  • Thacker RW, Ginsburg DW, Paul VJ (2001) Effects of herbivore exclusion and nutrient enrichment on coral reef macroalgae and cyanobacteria. Coral Reefs 19:318–329. doi:10.1007/s003380000122

    Article  Google Scholar 

  • Timmins-Schiffman E, O’Donnell MJ, Friedman CS, Roberts SB (2013) Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas. Mar Biol 160:1973–1982. doi:10.1007/s00227-012-2055-x

    Article  CAS  Google Scholar 

  • Todgham AE, Stillman JH (2013) Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr Comp Biol 53:539–544. doi:10.1093/icb/ict086

    Article  Google Scholar 

  • van Heerwaarden B, Kellermann V, Sgrò CM (2016) Limited scope for plasticity to increase upper thermal limits. Funct Ecol 30(12):1947–1956. doi:10.1111/1365-2435.12687

    Article  Google Scholar 

  • Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci USA 105:15452–15457. doi:10.1073/pnas.0803833105

    Article  CAS  Google Scholar 

  • Wangensteen OS, Dupont S, Casties I et al (2013) Some like it hot: temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J Exp Mar Biol Ecol 449:304–311. doi:10.1016/j.jembe.2013.10.007

    Article  Google Scholar 

  • Zhang H, Shin PKS, Cheung SG (2015) Physiological responses and scope for growth upon medium-term exposure to the combined effects of ocean acidification and temperature in a subtidal scavenger Nassarius conoidalis. Mar Environ Res 106:51–60. doi:10.1016/j.marenvres.2015.03.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the technicians and staff at CRIOBE, especially Franck Lerouvreur and Pascal Ung, for their assistance and support in constructing the experimental aquarium system used in this study. The authors would also like to thank Nathan Spindel and Dr. Steeve Comeau from California State University, Northridge, for providing acidified seawater for a portion of this work and for sharing their water parameter metadata and Dr. Peter Edmunds for assistance with measurement of total alkalinity. The authors are also immensely grateful for the assistance of Dr. Ricardo Beldade in collecting individuals of S. striatus from the field and Dr. David C. Howell for providing online tutorials (http://www.uvm.edu/~dhowell/StatPages) for conducting non-parametric permutation testing. This work was supported by the Agence Nationale de la Recherche, Live and Let Die [grant ANR-11-JSV7-012-01] and Partnership University Fund of the French American Cultural Exchange (Ocean Bridges Program, http://facecouncil.org/puf/) and conducted with US Government support to EJA awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, [32 CFR 168a].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Armstrong.

Ethics declarations

Conflict of interest

All applicable international and institutional guidelines for the care and permissions for the use of animals were followed during the conduct of this research. The authors declare no conflicts of interest in regards to the study presented here.

Additional information

Responsible Editor: H.-O. Pörtner.

Reviewed by Undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, E.J., Allen, T.R., Beltrand, M. et al. High pCO2 and elevated temperature reduce survival and alter development in early life stages of the tropical sea hare Stylocheilus striatus . Mar Biol 164, 107 (2017). https://doi.org/10.1007/s00227-017-3133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3133-x

Keywords

Navigation