Marine Biology

, 164:85 | Cite as

Shoot micro-distribution patterns in the Mediterranean seagrass Posidonia oceanica

  • Tiziano BacciEmail author
  • Francesco Sante Rende
  • Michele Scardi
Original Paper


Posidonia oceanica meadows host a huge number of shoots and their dynamics is strictly related to the spatial distribution patterns of those shoots. To investigate the structure of P. oceanica meadows at very small spatial scale (i.e. in the 100–102 cm range), point patterns of shoot micro-distribution were analyzed. Spatial distribution of shoots was recorded by cutting all the leaves and by digitizing shoot location from pictures of square frames (1 m2) that were randomly positioned in seemingly uniformly dense stands. Ten frames were sampled, all from Southern Italian meadows, and the position of 7828 shoots was recorded. Nearest neighbour distance (NNd) statistics revealed recurring patterns at the different spatial scales: regular patterns were recognized among shoots at smaller spatial scale (100–101 cm), while aggregated shoot distribution emerged in the 101–102 cm range and an important stochastic component was observed at larger spatial scales. Reasons underpinning different spatial point patterns in P. oceanica meadows were discussed by relating the observed patterns to ecological processes (i.e. competition among shoots, role of “species-specific” drivers or “site-specific” features), also including relationships between shoot NNd and shoot density counts. The raw data, provided as supplementary material, are currently the first and the only source of information available about shoot spatial micro-distribution. In this regard, although our data set cannot represent the whole spectrum of variability in P. oceanica meadows, it can be regarded as a first step towards a better knowledge of small scale shoot point patterns in P. oceanica meadows.


Small Spatial Scale Point Pattern Seagrass Meadow Poisson Point Process Shoot Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



All our thanks to the “R Development Core Team” and to the authors of various Statistical Packages utilized and downloaded from the CRAN (Comprehensive R Archive Network). The authors wish to thank the personnel of the MPA of Capo Rizzuto and Marine Park of Riviera dei Cedri for rendering this investigation possible, Claudio Bacci for assistance in the development of the sampling methodology, Domenico Rocca and Ezio Zito for their collaboration in scuba diving data collection and two anonymous reviewers and the associate editor for their comments, which improved the quality of the manuscript.

Compliance with ethical standards

All plant experiments were done with permission from the Marine Protected Area of Capo Rizzuto and the Marine Park of Riviera dei Cedri.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

227_2017_3121_MOESM1_ESM.xlsx (205 kb)
Supplementary material 1 (XLSX 205 KB)


  1. Alcoverro T, Duarte CM, Romero J (1995) Annual growth dynamics of Posidonia oceanica: contribution of large-scale versus local factors to seasonality. Mar Ecol Prog Ser 120:203–210CrossRefGoogle Scholar
  2. Bacci T, Rende SF, Rocca D, Scalise S, Cappa P, Scardi M (2015) Optimizing Posidonia oceanica (L.) Delile shoot density: lessons learned from a shallow meadow. Ecol Indic 58:199–206CrossRefGoogle Scholar
  3. Bacci T, Penna M, Rende SF, Trabucco B, Gennaro P, Bertasi F, Marusso V, Grossi L, Cicero AM (2016) Effects of Costa Concordia shipwreck on epiphytic assemblages and biotic features of Posidonia oceanica canopy. Mar Pollut Bull 109:110–116CrossRefGoogle Scholar
  4. Baddeley A, Kerscher M, Schladitz K, Scott BT (2000) Estimating the J function without edge correction. Stat Neerl 54:315–328CrossRefGoogle Scholar
  5. Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R. Chapman and Hall, LondonGoogle Scholar
  6. Balestri E, Cinelli F, Lardicci C (2003) Spatial variation in Posidonia oceanica structural, morphological and dynamic features in a northwestern Mediterranean coastal area: a multi-scale analysis. Mar Ecol Prog Ser 250:51–60CrossRefGoogle Scholar
  7. Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, The NetherlandsGoogle Scholar
  8. Boudouresque CF, Jeudy de Grissac A (1983) L’herbier à Posidonia oceanica en Méditerranée: les interactions entre la plante et le sédiment. J Rech Océanogr 8:99–122Google Scholar
  9. Boudouresque CF and Meinesz A (1982) D’ecouverte de l’herbier de Posidonies. Cah Parc nation Port-Cros 4:1–79Google Scholar
  10. Boudouresque CF, Bernard G, Pergent G, Shili A, Verlaque M (2009) Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot Mar 52:395–418CrossRefGoogle Scholar
  11. Boudouresque CF, Bernard G, Bonhomme P, Charbonnel E, Diviacco G, Meinesz A, Pergent G, Pergent-Martini C, Ruitton S, Tunesi L (2012) Protection and conservation of Posidoniao ceanica meadows. RAMOGE and RAC/SPA publ, Tunis, p 1–202Google Scholar
  12. Boudouresque CF, Pergent G, Pergent-Martini C, Ruitton S, Thibaut T, Verlaque V (2016) The necromass of the Posidonia oceanica seagrass meadow: fate, role, ecosystem services and vulnerability. Hydrobiologia 781:25–42CrossRefGoogle Scholar
  13. Buia MC, Zupo V, Mazzella L (1992) Primary production and growth dynamics in Posidonia oceanica. PSZNI Mar Ecol 13:1–16CrossRefGoogle Scholar
  14. Caye G (1980) Analyse du polymorphisme caulinaire chez Posidonia oceanica (L.) Del. Bull Soc Bot Fr 127:257–262Google Scholar
  15. Caye G (1982) Etude de la croissance de la posidonie, Posidonia oceanica (L.) Delile, formation des feuilles et croissance des tiges au cours d’une année. Tethys 10:229–235Google Scholar
  16. Den Hartog C (1971) The dynamic aspect in the ecology of seagrass communities. Thalass Jugosl 7:101–112Google Scholar
  17. Di Carlo G, Benedetti-Cecchi L, Badalamenti F (2011) Response of Posidonia oceanica growth to dredging effects of different magnitude. Mar Ecol Prog Ser 423:39–45CrossRefGoogle Scholar
  18. Duarte CM (1991) Seagrass depth limits. Aquat Bot 40:363–377CrossRefGoogle Scholar
  19. Duarte CM, Fourqurean JW, Krause-Jensen D, Olesen B (2006) Dynamics of seagrass stability and change. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrass: biology, ecology and conservation. Springer, Dordrecht, pp 271–294Google Scholar
  20. Dunstan PK, Johnson CR (2003) Competition coefficients in a marine epibenthic assemblage depend on spatial structure. Oikos 100:79–88CrossRefGoogle Scholar
  21. Efromovich S (1999) Nonparametric curve estimation: methods, theory and application. Springer, New YorkGoogle Scholar
  22. Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, CambridgeGoogle Scholar
  23. Gacia E, Duarte CM (2001) Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar Coast Shelf Sci 52:505–514CrossRefGoogle Scholar
  24. Giraud G (1977) Essai de classement des herbiers de Posidonia oceanica (Linné) Delile. Bot Mar 20:487–491CrossRefGoogle Scholar
  25. Gobert S, Kyramarios M, Lepoint G, Pergent-Martini C, Bouquegneau JM (2003) Variations à differentes échelles spatiales de l’herbier à Posidonia oceanica (L.) Delile; effet sur les paramètres physico-chimiques du sédiment. Oceanol Acta 26:199–207CrossRefGoogle Scholar
  26. Haase P, Pugnaire FI, Clark SC, Incoll LD (1996) Spatial patterns in a two tiered semi-arid shrubland in southeastern Spain. J Veg Sci 7:527–534CrossRefGoogle Scholar
  27. Kendrick GA, Marbà N, Duarte CM (2005a) Modelling formation of complex topography by the seagrass Posidonia oceanica. Estuar Coast Shelf Sci 65:717–725CrossRefGoogle Scholar
  28. Kendrick GA, Duarte CM, Marbà N (2005b) Clonality in seagrasses, emergent properties and seagrass landscapes. Mar Ecol Prog Ser 290:291–296CrossRefGoogle Scholar
  29. Leoni V, Pasqualini V, Pergent-Martini C, Vela A, Pergent G (2007) Physiological responses of Posidonia oceanica to experimental nutrient enrichment of the canopy water. J Exp Mar Biol Ecol 349:73–83CrossRefGoogle Scholar
  30. Lorenti M, Mazzella L, Buia MC (1995) Light limitation of Posidonia oceanica (L.) Delile growth at different depths. Rapp Comm Int Mer Médit 34:34Google Scholar
  31. Maestre FT, Escudero A, Martinez I, Guerrero C, Rubio A (2005) Does spatial pattern matter to ecosystem functioning? Insights from biological soil crusts. Funct Ecol 19:566–573CrossRefGoogle Scholar
  32. Marbà N, Duarte CM (1998) Rhizome elongation and seagrass clonal growth. Mar Ecol Prog Ser 174:269–280CrossRefGoogle Scholar
  33. Molenaar H, Barthélémy D, Reffye P, Meinesz A, Mialet I (2000) Modelling and growth patterns of Posidonia oceanica. Aquat Bot 66:85–99CrossRefGoogle Scholar
  34. Molinier R, Picard J (1952) Recherches sur les herbiers de phanérogames marines du littoral méditerranéen français. Ann Inst Oceanogr 27:157–234Google Scholar
  35. Montefalcone M, Vacchi M, Carbone C, Cabella R, Schiaffino CF, Elter FM, Morri C, Bianchi CN, Ferrari M (2016) Seagrass on the rocks:Posidonia oceanica settled on shallow-water hard substrata with stands wave stress beyond predictions. Estuar Coast Shelf Sci 180:114–122CrossRefGoogle Scholar
  36. Murrell DJ, Purves DW, Law R (2001) Uniting pattern and process in plant ecology. Trends Ecol Evol 16:529–553CrossRefGoogle Scholar
  37. Panayotidis P, Boudouresque CF, Marcot-Coqueugniot J (1980) Végétation marine de l’île de Port-Cros (Parc national). XX. Répartition spatiale des faisceaux des Posidonia oceanica (Linnaeus) Delile. Trav Sci Parc nation Port-Cros 6:223–237Google Scholar
  38. Panayotidis P, Boudouresque CF, Marcot-Coqueugniot J (1981) Microstructure de l’herbier à Posidonia oceanica (Linnaeus) Delile. Bot Mar 24:115–124CrossRefGoogle Scholar
  39. Pergent-Martini C, Pergent C (1996) Spatio-temporal dynamics of Posidonia oceanica beds near a seawage outfall (Mediterranean-France). Dredged and undredged sites in the Owen anchorage region of Southwestern Australia. In: Kuo J, Phillips RC, Walker DI, Kirkman H (eds) Proceedings of an international workshop on seagrass biology, Western Australia Museum, Perth, pp 299–306Google Scholar
  40. Pergent-Martini C, Leoni V, Pasqualini V, Ardizzone GD, Balestri E, Bedini R, Belluscio A, Belsher T, Borg J, Boudouresque CF, Boumaza S, Bouquegneau JM, Buia MC, Calvo S, Cebrian J, Charbonnel E, Cinelli F, Cossu A, Di Maida G, Dural B, Francour P, Gobert S, Lepoint G, Meinesz A, Molenaar H, Mansour HM, Panayotidis P, Peirano A, Pergent G, Piazzi L, Pirrotta M, Relini G, Romero J, Sanchez-Lizaso JL, Semroud R, Shembri A, Shili A, Tomasello A, Velimirov B (2005) Descriptors of Posidonia oceanica meadows: use and application. Ecol Indic 5:213–230CrossRefGoogle Scholar
  41. Rayburn AP, Monaco TA (2011) Using a chronosequence to link plant spatial patterns and ecological processes in grazed Great Basin plant communities. Rangel Ecol Manag 64:276–282CrossRefGoogle Scholar
  42. Renton M, Airey M, Cambridge ML, Kendrick GA (2011) Modelling seagrass growth and development to evaluate transplanting strategies for restoration. Ann Bot 108:1213–1223CrossRefGoogle Scholar
  43. Romero J, Pergent G, Pergent-Martini C, Mateo MA, Regnier C (1992) The detritic compartment in a Posidonia oceanica meadow: litter features, decomposition rates and mineral stocks. PSZNI Mar Ecol 13:73–83CrossRefGoogle Scholar
  44. Romero J, Pérez M, Alcoverro T (2012) L’alguer de Posidonia oceanica de les illes Medes: més de trenta anys d’estudi. El fonsmarí de les illes Medes i el Mongrí. Quatredè cades de recerca per a la conservació. En: Hereu B, Quintana X (édit) Recerca i territori, vol. 4, Càtedra d’ecosistemes litorals mediterranis publ, L’Estartit, p 79–100Google Scholar
  45. Schultz ST, Kruschel C, Bakran-Petricioli T, Petricioli D (2015) Error, power, and blind sentinels: The statistics of seagrass monitoring. PLoS One 10:e0138378CrossRefGoogle Scholar
  46. Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101CrossRefGoogle Scholar
  47. Stoll P, Prati D (2001) Intraspecific aggregation alters competitive interactions in experimental plant communities. Ecol 82:319–327CrossRefGoogle Scholar
  48. Szmyt J (2014) Spatial statistics in ecological analysis: from indices to functions. Silva Fenn 48:1–31.CrossRefGoogle Scholar
  49. Tilman D, Kareiva P (1997) The role of space in population dynamics and interspecific interactions. Princeton University Press, PrincetonGoogle Scholar
  50. Tirado R, Pugnaire FI (2003) Shrub spatial aggregation and consequences for reproductive success. Oecologia 136:296–301CrossRefGoogle Scholar
  51. Turnbull LA, Coomes DA, Purves DW, Rees M (2007) How spatial structure alters population and community dynamics in a natural plant community. J Ecol 95:79–89CrossRefGoogle Scholar
  52. Van Lieshout MNM (2010) A J-function for inhomogeneous point processes. Stat Neerl 65:183–201CrossRefGoogle Scholar
  53. Van Lieshout MNM, Baddeley A (2006) A J-function for marked point patterns. Ann I Stat Math 58:235–259CrossRefGoogle Scholar
  54. van Rein HB, Brown C, Quinn R, Breen J (2009) A review of sublittoral monitoring methods in temperate waters: a focus on scale. Underw Technol 28:99–113CrossRefGoogle Scholar
  55. Velazquez E, Martinez I, Getzin S, Moloney KA, Wiegandl T (2016) An evaluation of the state of spatial point pattern analysis in ecology. Ecography 39:1042–1055CrossRefGoogle Scholar
  56. Waller L A, Gotway C A (2004) Applied spatial statistics for public health data. Wiley, HobokenCrossRefGoogle Scholar
  57. Wiegand T and Moloney KA (2014) Handbook of spatial point-pattern analysis in ecology. CRC Press, Boca RatonGoogle Scholar
  58. Zupo V, Buia MC, Mazzella L (1997) A production simulation model for Posidonia oceanica based on temperature. Estuar Coast Shelf Sci 44:483–492CrossRefGoogle Scholar
  59. Zupo V, Mazzella L, Buia MC, Gambi MC, Lorenti M, Scipione MB, Cancemi G (2006) A small-scale analysis of the spatial structure of a Posidonia oceanica meadow off the Island of Ischia (Gulf of Naples, Italy): relationship with the seafloor morphology. Aquat Bot 84:101–109CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Tiziano Bacci
    • 1
    Email author
  • Francesco Sante Rende
    • 1
  • Michele Scardi
    • 2
  1. 1.ISPRA–Institute for Environmental Protection and ResearchRomeItaly
  2. 2.Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations