Marine Biology

, 164:90 | Cite as

Asymmetric hybridization and introgression between sibling species of the pufferfish Takifugu that have undergone explosive speciation

  • Hiroshi TakahashiEmail author
  • Airi Toyoda
  • Taku Yamazaki
  • Shusaku Narita
  • Tsuyoshi Mashiko
  • Yukio Yamazaki
Original Paper


Pufferfishes belonging to the genus Takifugu are a prominent example of recent adaptive radiations of marine fishes. Using amplified fragment length polymorphism (AFLP) and mitochondrial DNA (mtDNA) markers, the genetic characteristics of natural hybrids between two sibling species, Takifugu snyderi and Takifugu stictonotus, were investigated to gain insights into the role of hybridization in rapid diversification. Numerous early generations of hybrids (131 F1 hybrids and 18 first-generation backcrosses) were screened by Bayesian assignment procedures from samples collected at three sites off the Pacific coast of eastern Honshu, Japan (Ibaraki: 36°21′N, 140°37′E; Fukushima: 37°03′N, 141°03′E; Iwate: 40°02′N, 141°59′E), during 2012–2014. Analysis of mtDNA indicated that hybridization is highly directional, as the majority of the F1 hybrids (75.6%) were offspring between T. stictonotus females and T. snyderi males. Among the 18 backcrosses, 17 were toward T. snyderi and one was toward T. stictonotus. Two of 118 individuals classified as genetically pure T. snyderi based on AFLP markers were affected by mtDNA introgression from T. stictonotus. These results suggest that interspecific gene flow has been highly asymmetrical toward T. snyderi, which may partly explain the marked difference in intraspecific genetic diversity between the two species. The proportion of F1 hybrids in the Ibaraki and Fukushima areas is exceptionally high compared with that of other marine fishes, indicating the need for continuous monitoring of hybridization and its impact on integrity of each parental species under the changing marine environment.


Amplify Fragment Length Polymorphism Parental Species Amplify Fragment Length Polymorphism Analysis Tsushima Warm Current Fukushima Prefecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Kazuhiko Kurimoto, Naoto Itou, Tadahiro Soutome, Toru Sakuma, Shinichiro Ikeguchi, Hiroyuki Doi, and Harumi Sakai for their help in obtaining the samples and Youta Hazama, Kyoji Fijiwara, Tomoko Sato, and Yuko Nozaki for their help in the laboratory work. This work was supported in part by JSPS KAKENHI (Nos. 19580229 and 25440227) and by Grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (the special scheme project on regional developing strategy, Project No. 16822337).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animals have been sampled and/or treated according to the national legislation in Japan. This article does not contain studies with human participants by any of the authors.

Supplementary material

227_2017_3120_MOESM1_ESM.pdf (2.7 mb)
Supplementary material 1 (PDF 2732 KB)
227_2017_3120_MOESM2_ESM.pdf (35 kb)
Supplementary material 2 PDF 34 KB)


  1. Abe T, Tabeta O (1994) Pufferfishes available in Japan: an illustrated guide to their identification. Chuouhouki Publ. Co., TokyoGoogle Scholar
  2. Albert V, Jónsson B, Bernatchez L (2006) Natural hybrids in Atlantic eels (Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time. Mol Ecol 15:1903–1916. doi: 10.1111/j.1365-294X.2006.02917.x CrossRefGoogle Scholar
  3. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229Google Scholar
  4. Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914. doi: 10.1111/j.1365-294X.2005.02655.x CrossRefGoogle Scholar
  5. Burford MO, Bernardi G, Carr MH (2011) Analysis of individual year-classes of a marine fish reveals little evidence of first-generation hybrids between cryptic species in sympatric regions. Mar Biol 158:1815–1827. doi: 10.1007/s00227-011-1694-7 CrossRefGoogle Scholar
  6. Cahill JA, Stirling I, Kistler L, Salamzade R, Ersmark E, Fulton TL, Stiller M, Green RE, Shapiro B (2015) Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol Ecol 24:1205–1217. doi: 10.1111/mec.13038 CrossRefGoogle Scholar
  7. Duchesne P, Bernatchez L (2002) AFLPOP: a computer program for simulated and real population allocation, based on AFLP data. Mol Ecol Notes 2:380–383. doi: 10.1046/j.1471-8286.2002.00251.x CrossRefGoogle Scholar
  8. Duvernell DD, Lindmeier JB, Faust KE, Whitehead A (2008) Relative influences of historical and contemporary forces shaping the distribution of genetic variation in the Atlantic killifish, Fundulus heteroclitus. Mol Ecol 17:1344–1360. doi: 10.1111/j.1365-294X.2007.03648.x CrossRefGoogle Scholar
  9. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  10. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  11. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578. doi: 10.1111/j.1471-8286.2007.01758.x CrossRefGoogle Scholar
  12. Fujita S (1967) Artificial interspecific and intergeneric hybridizations among the Tetraodontid puffers (preliminary report). Jpn J Michurin Biol 3:5–11Google Scholar
  13. Gourbière S, Mallet J (2010) Are species real? The shape of the species boundary with exponential failure, reinforcement, and the “missing snowball”. Evol Int J Org Evol 64:1–24. doi: 10.1111/j.1558-5646.2009.00844.x CrossRefGoogle Scholar
  14. Grant PR, Grant BR (1992) Hybridization of bird species. Science 256:193–197CrossRefGoogle Scholar
  15. Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711. doi: 10.1126/science.1070315 CrossRefGoogle Scholar
  16. Heliconius Genome Consortium (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98. doi: 10.1038/nature11041 Google Scholar
  17. Herder F, Nolte AW, Pfaender J, Schwarzer J, Hadiaty RK, Schliewen UK (2006) Adaptive radiation and hybridization in Wallace’s Dreamponds: evidence from sailfin silversides in the Malili Lakes of Sulawesi. Proc R Soc B 273:2209–2217. doi: 10.1098/rspb.2006.3558 CrossRefGoogle Scholar
  18. Innan H, Terauchi R, Kahl G, Tajima F (1999) A method for estimating nucleotide diversity from AFLP data. Genetics 151:1157–1164Google Scholar
  19. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi: 10.1093/bioinformatics/btn129 CrossRefGoogle Scholar
  20. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi: 10.1186/1471-2156-11-94 CrossRefGoogle Scholar
  21. Kai W, Kikuchi K, Tohari S, Chew AK, Tay A, Fujiwara A, Hosoya S, Suetake H, Naruse K, Brenner S, Suzuki Y (2011) Integration of the genetic map and genome assembly of fugu facilitates insights into distinct features of genome evolution in teleosts and mammals. Genome Biol Evol 3:424–442. doi: 10.1093/gbe/evr041 CrossRefGoogle Scholar
  22. Kikuchi K, Kai W, Hosokawa A, Mizuno N, Suetake H, Asahina K, Suzuki Y (2007) The sex-determining locus in the tiger pufferfish, Takifugu rubripes. Genetics 175:2039–2042. doi: 10.1534/genetics.106.069278 CrossRefGoogle Scholar
  23. Laakkonen HM, Strelkov P, Lajus DL, Väinölä R (2015) Introgressive hybridization between the Atlantic and Pacific herrings (Clupea harengus and C. pallasii) in the north of Europe. Mar Biol 162:39–54. doi: 10.1007/s00227-014-2564-x CrossRefGoogle Scholar
  24. Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerová M, Rubin C, Wang C, Zamani N, Grant BR, Grant PR, Webster MT, Andersson L (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375. doi: 10.1038/nature14181 CrossRefGoogle Scholar
  25. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99. doi: 10.1111/j.1365-294X.1994.tb00109.x CrossRefGoogle Scholar
  26. Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237. doi: 10.1016/j.tree.2005.02.010 CrossRefGoogle Scholar
  27. Mallet J, Beltrán M, Neukirchen W, Linares M (2007) Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evol Biol 7:28. doi: 10.1186/1471-2148-7-28 CrossRefGoogle Scholar
  28. Masuda Y, Shinohara N, Takahashi Y, Tabeta O, Matsuura K (1991) Occurrence of natural hybrid between pufferfishes, Takifugu xanthopterus and T. vermicularis, in Ariake Bay, Kyushu, Japan. Nippon Suisan Gakkaishi 57:1247–1255CrossRefGoogle Scholar
  29. Mirimin L, Kerwath SE, Macey BM, Bester-van der Merwe AE, Lamberth SJ, Bloomer P, Roodt-Wilding R (2014) Identification of naturally occurring hybrids between two overexploited sciaenid species along the South African coast. Mol Phylogenet Evol 76:30–33. doi: 10.1016/j.ympev.2014.02.010 CrossRefGoogle Scholar
  30. Montanari SR, Hobbs JPA, Pratchett MS, Bay LK, Van Herwerden L (2014) Does genetic distance between parental species influence outcomes of hybridization among coral reef butterflyfishes? Mol Ecol 23:2757–2770. doi: 10.1111/mec.12762 CrossRefGoogle Scholar
  31. Muto N, Kai Y, Noda T, Nakabo T (2013) Extensive hybridization and associated geographic trends between two rockfishes Sebastes vulpes and S. zonatus (Teleostei: Scorpaeniformes: Sebastidae). J Evol Biol 26:1750–1762. doi: 10.1111/jeb.12175 CrossRefGoogle Scholar
  32. Nakabo T (2013) Fishes of Japan with pictorial keys to the species, 3rd edn. Tokai University Press, TokyoGoogle Scholar
  33. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859. doi: 10.1038/nrg1707 CrossRefGoogle Scholar
  34. Potts WM, Henriques R, Santos CV, Munnik K, Ansorge I, Dufois F, Booth AJ, Kirchner C, Sauer WHH, Shaw PW (2014) Ocean warming, a rapid distributional shift, and the hybridization of a coastal fish species. Glob Change Biol 20:2765–2777. doi: 10.1111/gcb.12612 CrossRefGoogle Scholar
  35. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  36. Pujolar JM, Jacobsen MW, Als TD, Frydenberg J, Magnussen E, Jónsson B, Jiang X, Cheng L, Bekkevold D, Maes GE, Bernatchez L, Hansen MM (2014) Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms. Heredity 112:627–637. doi: 10.1038/hdy.2013.145 CrossRefGoogle Scholar
  37. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Accessed 20 January 2016
  38. Santini F, Nguyen MTT, Sorenson L, Waltzek TB, Lynch Alfaro JW, Eastman JM, Alfaro ME (2013) Do habitat shifts drive diversification in teleost fishes? An example from the pufferfishes (Tetraodontidae). J Evol Biol 26:1003–1018. doi: 10.1111/jeb.12112 CrossRefGoogle Scholar
  39. Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207. doi: 10.1016/j.tree.2004.01.003 CrossRefGoogle Scholar
  40. Seehausen O, Takimoto G, Roy D, Jokela J (2008) Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol Ecol 17:30–44. doi: 10.1111/j.1365-294X.2007.03529.x CrossRefGoogle Scholar
  41. Takahashi H, Goto A (2001) Evolution of East Asian ninespine sticklebacks as shown by mitochondrial DNA control region sequences. Mol Phylogenet Evol 21:135–155. doi: 10.1006/mpev.2001.1001 CrossRefGoogle Scholar
  42. Takahashi H, Takata K (2000) Multiple lineages of the mitochondrial DNA introgression from Pungitius pungitius (L.) to Pungitius tymensis (Nikolsky). Can J Fish Aquat Sci 57:1814–1833. doi: 10.1139/f00-133 CrossRefGoogle Scholar
  43. Takahashi H, Takeshita N, Tanoue H, Ueda S, Takeshima H, Komatsu T, Kinoshita I, Nishida M (2015) Severely depleted genetic diversity and population structure of a large predatory marine fish (Lates japonicus) endemic to Japan. Conserv Genet 16:1155–1165. doi: 10.1007/s10592-015-0729-x CrossRefGoogle Scholar
  44. Takatsuki Y, Kuragano T, Shiga T, Bungi Y, Inoue H, Fujiwara H, Ariyoshi M (2007) Long-term trends in sea surface temperature adjacent to Japan. Sokko Jiho 74:S33–S87Google Scholar
  45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 CrossRefGoogle Scholar
  46. Tian Y, Kidokoro H, Watanabe T, Igeta Y, Sakaji H, Ino S (2012) Response of yellowtail, Seriola quinqueradiata, a key large predatory fish in the Japan Sea, to sea water temperature over the last century and potential effects of global warming. J Mar Syst 91:1–10. doi: 10.1016/j.jmarsys.2011.09.002 CrossRefGoogle Scholar
  47. Vähä JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72. doi: 10.1111/j.1365-294X.2005.02773.x CrossRefGoogle Scholar
  48. Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151. doi: 10.1046/j.0962-1083.2001.01415.x CrossRefGoogle Scholar
  49. Vonlanthen P, Bittner D, Hudson AG, Young KA, Müller R, Lundsgaard-Hansen B, Roy D, Di Piazza S, Largiader CR, Seehausen O (2012) Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357–362. doi: 10.1038/nature10824 CrossRefGoogle Scholar
  50. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414. doi: 10.1093/nar/23.21.4407 CrossRefGoogle Scholar
  51. Wagawa T, Kuroda H, Ito S, Kakehi S, Yamanome T, Tanaka K, Endoh Y, Kaga S (2015) Variability in water properties and predictability of sea surface temperature along Sanriku coast, Japan. Cont Shelf Res 103:12–22. doi: 10.1016/j.csr.2015.04.016 CrossRefGoogle Scholar
  52. Wirtz P (1999) Mother species–father species: unidirectional hybridization in animals with female choice. Anim Behav 58:1–12. doi: 10.1006/anbe.1999.1144 CrossRefGoogle Scholar
  53. Yamanoue Y, Miya M, Matsuura K, Miyazawa S, Tsukamoto N, Doi H, Takahashi H, Mabuchi K, Nishida M, Sakai H (2009) Explosive speciation of Takifugu: another use of fugu as a model system for evolutionary biology. Mol Biol Evol 26:623–629. doi: 10.1093/molbev/msn283 CrossRefGoogle Scholar
  54. Yasuda I (2003) Hydrographic structure and variability in the Kuroshio-Oyashio transition area. J Oceanogr 59:389–402CrossRefGoogle Scholar
  55. Yokogawa K, Urayama K (2000) Natural hybrids between two species of puffer, Takifugu vermicularis and T. poecilonotus, obtained from the Seto Inland Sea, Japan. Jpn J Ichthyol 47:67–73Google Scholar
  56. Young WP, Ostberg CO, Keim P, Thorgaard GH (2001) Genetic characterization of hybridization and introgression between anadromous rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Mol Ecol 10:921–930. doi: 10.1046/j.1365-294X.2001.01247.x CrossRefGoogle Scholar
  57. Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913. doi: 10.1046/j.1365-294x.1999.00620.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.National Fisheries UniversityShimonosekiJapan
  2. 2.Ibaraki Prefectural Fisheries Research InstituteHitachinakaJapan

Personalised recommendations