Marine Biology

, 164:79 | Cite as

Attachment capacity of the sea urchin Paracentrotus lividus in a range of seawater velocities in relation to test morphology and tube foot mechanical properties

  • Mishal Cohen-RengifoEmail author
  • Claire Moureaux
  • Philippe Dubois
  • Patrick Flammang
Original paper


Intertidal rocky shores are stressful environments where benthic invertebrates experience large wave-induced hydrodynamic forces that can detach them from the substratum. The tube feet of echinoids counteract these forces and help them remain securely affixed. Sea urchins display a high degree of phenotypic plasticity which may help them cope with hydrodynamic stress. We evaluated whether habitats presenting different seawater velocities induce plastic responses in the attachment capacity of the sea urchin Paracentrotus lividus by quantifying their morphology and the adhesive and mechanical properties of their tube feet. Intertidal adult sea urchins from three subpopulations were collected around the Crozon peninsula (France). Localities differed according to measured water velocities. Size was significantly lower in the two most exposed sites where sea urchins also presented a higher density of tube feet. Tube foot adhesive properties were not significantly different between sites, but their extensibility and toughness were significantly higher in individuals from the most exposed site. Using this information, we calculated a safety factor to predict the flow velocity that would cause detachment from the substratum. It showed individuals from the most exposed habitat would resist higher flow velocities (up to 7.59 ± 0.90 m s−1). Both morphometry and tube foot mechanical properties vary among subpopulations and show an intraspecific plasticity in P. lividus. Although, differences in sea water velocity may be one cause of this intraspecific variation, it likely results from a combination of biotic and abiotic factors.


Acoustic Doppler Velocimeter Attachment Force Intertidal Rocky Shore Fractional Weight Loss Global Tenacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.









Dynamic viscosity




Acoustic Doppler velocimeter


Analysis of variance


Cap de la Chèvre


Drag coefficient


Lift coefficient


Disk detachment force


Global detachment force


Hydrodynamic force


Maximal attachment force


Traction force


Fractional weight loss






Initial length


Sea urchin length (test diameter with spines)






Polyvinyl chloride


Reynolds number


Cross-sectional surface area of the stem connective tissue layer


Disk adhesive surface


Safety factor


Global adhesive surface area


Planform projected surface area


Profile projected surface area


French National Hydrographic Service






Number of adoral tube feet


Disk tenacity


Global tenacity


Water velocity





M. Cohen and C. Moureaux are holders of Belgian FRIA - Fund for Research in Industry and Agriculture PhD fellowships. Ph. Dubois and P. Flammang are Research Directors of the National Fund for Scientific Research (FRS-FNRS, Belgium). The study was supported by an ARES—Research and Higher Education Academy doctoral grant. We thank M. Bauwens and Ph. Pernet for their contributions in conducting the field work, M. Collard for her advices and unconditional assistance, S. MZoudi, M. Bauwens and Th. Dupont and for their valuable technical support in the laboratory. We thank the editor and two reviewers for their useful and constructive feedback on the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare they have no conflict of interest.

Ethical approval

Animals used in our experiments were maintained and treated in compliance with the guidelines specified by the Belgian Ministry of Trade and Agriculture for the care and use of animals.


  1. Boudouresque CF, Verlaque M (2007) Ecology of Paracentrotus lividus. In: Laurence JM (ed) Edible sea urchins: biology and ecology, 2nd edn. Elsevier, Tampa, pp 243–285. doi: 10.1016/S0167-9309(07)80077-9 Google Scholar
  2. Denny MW (1985) Wave forces on intertidal organisms: a case study. Limnol Oceanogr 30:1171–1187. doi: 10.4319/lo.1985.30.6.1171 CrossRefGoogle Scholar
  3. Denny MW (1988) Biology and the mechanics of the wave swept-environment. Princeton University Press, PrincetonCrossRefGoogle Scholar
  4. Denny MW (1991) Biology, natural selection and the prediction of maximal wave-induced forces. S Afr J Mar Sci 10:353–363. doi: 10.2989/02577619109504644 CrossRefGoogle Scholar
  5. Denny MW, Gaylord B (1996) Why the urchin lost its spines: hydrodynamic forces and survivorship in three echinoids. J Exp Biol 199:717–729Google Scholar
  6. DeWitt TJ, Schneider SM (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, OxfordGoogle Scholar
  7. Ebert TA (1980) Relative growth of sea urchin jaws: an example of plastic resource allocation. Bull Mar Sci 30(2):467–474Google Scholar
  8. Ebert TA (1996) Adaptative aspects of phenotypic plasticity in echinoderms. Oceanol Acta 19(3–4):347–355Google Scholar
  9. Ebert TA, Hernández JC, Clemente S (2014) Annual reversible plasticity of feeding structures: cyclical changes of jaw allometry in a sea urchin. Proc R Soc B 281:20132284. doi: 10.1098/rspb.2013.2284 CrossRefGoogle Scholar
  10. Edwards PB, Ebert TA (1991) Plastic responses to limited food availability and spine damage in the sea urchin Strongylocentrotus purpuratus (Stimpson). J Exp Mar Biol Ecol 145:205–220. doi: 10.1016/0022-0981(91)90176-W CrossRefGoogle Scholar
  11. Fernández C (1996) Croissance et nutrition de Paracentrotus lividus dans le cadre d’un projet aquacole avec alimentation artificielle. Dissertation, Université de Corse, CorsicaGoogle Scholar
  12. Fernández C, Boudouresque C (1997) Phenotypic plasticity of Paracentrotus lividus (Echinodermata: Echinoidea) in a lagoonal environment. Mar Biol Prog Ser 152(1–3):145–154CrossRefGoogle Scholar
  13. Flammang P (1996) Adhesion in echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm studies, vol 5. Balkema, Rotterdam, pp 1–60Google Scholar
  14. Flammang P, Jangoux M (1993) Functional morphology of coronal and peristomial podia in Sphaerechinus granularis (Echinodermata Echinoidea). Zoomorphol 113:47–60. doi: 10.1007/BF00430976 CrossRefGoogle Scholar
  15. Frank PW (1981) A condition for a sessile strategy. Am Nat 118:288–290CrossRefGoogle Scholar
  16. Gallien WB (1986) A comparison of hydrodynamic forces on two sympatric sea urchins: implications of morphology and habitat. Master thesis, University of Hawaii, HawaiiGoogle Scholar
  17. Gaylord B (2000) Biological implications of surf-zone flow complexity. Limnol Oceanogr 45(1):174–188. doi: 10.4319/lo.2000.45.1.0174 CrossRefGoogle Scholar
  18. Gaylord B, Blanchette CA, Denny MW (1994) Mechanical consequences of size in wave-swept algae. Ecol Monogr 64:287–313. doi: 10.2307/2937164 CrossRefGoogle Scholar
  19. Grosjean P, Spirilet C, Gosselin P, Vaitilingon D, Jangoux M (1998) Land-based, closed-cycle echiniculture of Paracentrotus lividus (Lamarck) (Echinoidea Echinodermata): a long-term experiment at a pilot scale. J Shellfish Res 17(5):1523–1531Google Scholar
  20. Guidetti P, Mori P (2005) Morpho-functional defences of Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators. Mar Biol 147(3):797–802. doi: 10.1007/s00227-005-1611-z CrossRefGoogle Scholar
  21. Haag N, Russell M, Hernández JC (2016) Effects of spine damage and microhabitat on resource allocation of the purple sea urchin Strongylocentrotus purpuratus (Stimpson 1857). J Exp Biol Ecol 482:106–117. doi: 10.1016/j.jembe.2016.05.005 CrossRefGoogle Scholar
  22. Hart AM, Lasi FE, Glenn EP (2002) SLODS: slow dissolving standards for water flow measurements. Aquat Eng 25:239–252. doi: 10.1016/S0144-8609(01)00085-1 CrossRefGoogle Scholar
  23. Helmuth B, Denny M (2003) Predicting wave exposure in the rocky intertidal zone: Do bigger waves always lead to larger forces? Limnol Oceangr 48(3):1338–1345. doi: 10.4319/lo.2003.48.3.1338 CrossRefGoogle Scholar
  24. Hennebert E, Haesaerts D, Dubois Ph, Flammang P (2010) Evaluation of the different forces brought into play during tube foot activities in sea stars. J Exp Biol 213:1162–1174. doi: 10.1242/jeb.037903 CrossRefGoogle Scholar
  25. Hernández JC, Russell MP (2010) Substratum cavities affect growth-plasticity, allometry, movement and feeding rates in the sea urchin Strongylocentrotus purpuratus. J Exp Biol 213:520–525. doi: 10.1242/jeb.029959 CrossRefGoogle Scholar
  26. Jacinto D, Cruz T (2012) Parcentrotus lividus (Echinodermata: Echinoidea) attachment force and burrowing behavior in rocky shores of SW Portugal. Zoosymposia 7:231–240.Google Scholar
  27. Kawamata S (1998) Effect of waves-induced oscillatory flow on grazing by a subtidal sea urchin Strongylocentrotus nudus (A Agassiz). J Exp Mar Biol Ecol 224:31–48. doi: 10.1016/S0022-0981(97)00165-2 CrossRefGoogle Scholar
  28. Kawamata S (2010) Inhibitory effects of wave action on destructive grazing by sea urchins: a review. Bull Fish Res Agen 32:95–102Google Scholar
  29. Kiliç A, Teymen A (2008) Determination of mechanical properties of rocks using simple methods. Bull Eng Geol Environ 67:237. doi: 10.1007/s10064-008-0128-3 CrossRefGoogle Scholar
  30. Lauzon-Guay JS, Scheibling RE (2007) Seasonal variation in movement, aggregation and destructive grazing of the green sea urchin (Strongylocentrotus droebachiensis) in relation to wave action and sea temperature. Mar Biol 151:2109–2118. doi: 10.1007/s00227-007-0668-2 CrossRefGoogle Scholar
  31. Lawrence JM (1987) A functional biology of echinoderms. Croom Helm Ltd. Publishers, LondonGoogle Scholar
  32. Levitan DR (1991) Skeletal changes in the test and jaws of the sea urchin Diadema antillarum in response to food limitation. Mar Biol 111:431–435. doi: 10.1007/BF01319415 CrossRefGoogle Scholar
  33. Lewis JB, Storey GS (1984) Differences in morphology and life history traits of the echinoid Echinometra lucunter from different habitats. Mar Ecol Prog Ser 15:207–211CrossRefGoogle Scholar
  34. Märkel K, Titschack H (1965) Das Festhaltevermögen von Seeigeln und die Reißfestigkeit ihrer Ambulacralfüßchen. Sond Zeit Naturw 10:268CrossRefGoogle Scholar
  35. Minor MA, Scheibling RE (1997) Effects of food ration and feeding regime on growth and reproduction of the sea urchin Strongylocentrotus droebachiensis. Mar Biol 129:159–167. doi: 10.1007/s002270050156 CrossRefGoogle Scholar
  36. Moran AL (1999) Size and performance of juvenile marine invertebrates: potential contrasts between intertidal and subtidal benthic habitats. Am Zool 39:304–312. doi: 10.1093/icb/39.2.304 CrossRefGoogle Scholar
  37. Moureaux C (2011) Plasticité phénotypique du squelette des piquants d’échinides propriétés et fonctions d’un matériau biologique. Dissertation. Université Libre de Bruxelles, BrusselsGoogle Scholar
  38. Puijalon S, Bornette G, Sagnes P (2005) Adaptations to increasing hydraulic stress: morphology, hydrodynamics and fitness of two higher aquatic plant species. J Exp Bot 56:777–786. doi: 10.1093/jxb/eri063 CrossRefGoogle Scholar
  39. Russell MP (1987) Life history traits and resource allocation in the purple sea urchin, Strongylocentrotus purpuratus. J Exp Mar Bio Ecol 108:199–216. doi: 10.1016/0022-0981(87)90085-2 CrossRefGoogle Scholar
  40. Russell MP (1998) Resource allocation plasticity in sea urchins: rapid, diet induced, phenotypic changes in the green sea urchin, Strongylocentrotus purpuratus (Müller). J Exp Mar Bio Ecol 220:1–14. doi: 10.1016/S0022-0981(97)00079-8 CrossRefGoogle Scholar
  41. Russell MP (2001) Spatial and temporal variation in growth of the green sea urchin, Strongylocentrotus droebachiensis, in the Gulf of Maine, USA. In: Barker M, Balkema (eds) Proc 10th Int Echinoderm Conf. Balkema, Rotterdam, pp 533–538Google Scholar
  42. Russell MP, Ebert TA, Garcia V, Bodnar A (2013) Field and laboratory growth estimates of the sea urchin Lytechinus variegatus in Bermuda. In: Johnson C (ed) Proc 13th Int Echinoderm Conf. CRC Press, Boca Raton, pp 133–139. doi: 10.1201/b13769-19 Google Scholar
  43. Santos R, Flammang P (2005) Morphometry and mechanical design of tube feet stems in sea urchins: a comparative study. J Exp Mar Biol Ecol 315:211–223. doi: 10.1016/j.jembe.2004.09.016 CrossRefGoogle Scholar
  44. Santos R, Flammang P (2006) Morphology and tenacity of the tube foot disc of three common European sea urchins species: a comparative study. Biofouling 22(3):187–200. doi: 10.1080/08927010600743449 CrossRefGoogle Scholar
  45. Santos R, Flammang P (2007) Intra- and interspecific variation of attachment strength in sea urchins. Mar Ecol Prog Ser 332:129–142. doi: 10.3354/meps332129 CrossRefGoogle Scholar
  46. Santos R, Flammang P (2008) Estimation of the attachment strength of the shingle sea urchin, Colobocentrotus atratus, and comparison with three sympatric echinoids. Mar Biol 154(1):37–49. doi: 10.1007/s00227-007-0895-6 CrossRefGoogle Scholar
  47. Santos R, Gorb S, Jamar V, Flammang P (2005a) Adhesion of echinoderm tube feet to rough surfaces. J Exp Biol 208:2555–2567. doi: 10.1242/jeb.01683 CrossRefGoogle Scholar
  48. Santos R, Haesaerts D, Jangoux M, Flammang P (2005b) The tube feet of sea urchins and sea stars contain functionally different mutable collagenous tissue. J Exp Biol 208:2277–2288. doi: 10.1242/jeb.01641 CrossRefGoogle Scholar
  49. Santos R, Hennebert E, Varela Coelho A, Flammang P (2009). The echinoderm tube foot and its role in temporary underwater adhesion. In: Gorb S (ed) Functional surfaces in biology, vol. 2. Springer, Dordrecht, pp 9–41. doi: 10.1007/978-1-4020-6695-5_2 Google Scholar
  50. Sharp DT, Gray LE (1962) Studies on factors affecting the local distribution of two sea urchins, Arbacia punctulata and Lytechinus variegatus. Ecol 43(2):309–313. doi: 10.2307/1931986 CrossRefGoogle Scholar
  51. Siddon E, Witman JD (2003) Influence on chronic, low-level hydrodynamic forces on subtidal community structure. Mar Ecol Prog Ser 261:99–110. doi: 10.3354/meps261099 CrossRefGoogle Scholar
  52. Sloan NA (1984) Echinoderm fisheries of the world: a review. In: Keegan B, O’Connor B (eds) Proc 5th Int Echinoderm Conf. Balkema, Rotterdam, pp 24–29Google Scholar
  53. Smith AB (1978) A functional classification of the coronal pores of echinoids. Palaeontol 21(4):759–789Google Scholar
  54. Statzner B, Holm T (1982) Morphological adaptations of benthic invertebrates to stream flow—an old question studied by means of a new technique (Laser Doppler Anemometry). Oecol 53(3):290–292. doi: 10.1007/BF00389001 CrossRefGoogle Scholar
  55. Stearns SC (1989) The evolutionary significance of phenotypic plasticity: phenotypic sources of variation among organisms can be described by developmental switches and reaction norms. Biosci 39:436–446. doi: 10.2307/1311135 CrossRefGoogle Scholar
  56. Stewart HL, Britton-Simmons KH (2011) Streamlining behaviour of the red sea urchin Strongylocentrotus franciscanus in response to flow. J Exp Biol 214:2665–2659. doi: 10.1242/jeb.056580 Google Scholar
  57. Thomanek L, Helmuth B (2002) Physiological ecology of intertidal organisms: a synergy of concepts. Integr Comp Biol 42:771–775. Doi: 10.1093/icb/42.4.771 CrossRefGoogle Scholar
  58. Toubarro D, Gouveia A, Ribeiro RM, Simões N, da Costa G, Cordeiro C, Santos R (2016) Cloning, characterization and expression levels of the Nectin gene from the tube feet of the sea urchin Paracentrotus lividus. Mar Biotechnol 18(3):372–383. Doi: 10.1007/s10126-016-9698-4 CrossRefGoogle Scholar
  59. Troadec P, Le Goff R et al (1997) Etat des lieux et des milieux de la rade de Brest et de son bassin versant. = notice_display&id = 14288. Accessed 14 July 2013
  60. Tuya F, Cisneros-Aguirre J, Ortega L, Haroun RJ (2007) Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: Role of flow-induced forces. Estuar Coast Shelf Sci 73:481–488. doi: 10.1016/j.ecss.2007.02.007 CrossRefGoogle Scholar
  61. Underwood AJ (1999) Physical disturbances and their direct effect on an indirect effect: responses of an intertidal assemblages to as severe storm. J Exp Mar Biol Ecol 232:125–140. doi: 10.1016/S0022-0981(98)00105-1 CrossRefGoogle Scholar
  62. Vogel S (1994) Life in moving fluids. 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  63. Vogel S (2003) Comparative biomechanics: life’s physical world. Princeton University Press, PrincetonGoogle Scholar
  64. Whitman DW, Agrawal AA (2009) What is phenotypic plasticity and why is it important. In: Withman DW, Ananthakrishnan TN (eds) Phenotypic plasticity of insects: mechanism and consequences. Science Publishers, Enfield, pp 1–63. doi: 10.1201/b10201-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratoire de Biologie des Organismes Marins et Biomimétisme, Institut des BiosciencesUniversité de MonsMonsBelgium
  2. 2.Laboratoire de Biologie Marine, (CP160/15)Université Libre de BruxellesBrusselsBelgium

Personalised recommendations