Marine Biology

, 164:78 | Cite as

Response of native marine sponges to invasive Tubastraea corals: a case study

  • Amanda G. Silva
  • Humberto F. M. Fortunato
  • Gisele Lôbo-Hajdu
  • Beatriz G. FleuryEmail author
Invasive Species - Original paper
Part of the following topical collections:
  1. Invasive Species


Despite the massive expansion of the invasive corals Tubastraea spp. in the Tropical Western Atlantic, some sponge species may outcompete them on a local scale. The aims of the present study were: (1) to describe the spatiotemporal dynamics of the benthic community and (2) to assess the interactions between marine sponges and invasive Tubastraea corals. Communities were monitored at four locations and four times (2013–2015) in Ilha Grande Bay, southeastern Brazil. The percent cover of the dominant taxa in the benthic communities was calculated and all interactions among native sponges and Tubastraea spp. corals counted within photoquadrats. These in situ observations were used to assess four categories of interaction types. We did not find statistical differences in the benthic communities among locations and times. Turf forming algae and Palythoa caribaeorum represented 60–70% of the benthic community. The number and types of interactions between sponges and corals differed significantly among locations. The most common interaction was contact without dominance. Iotrochota arenosa and Scopalina ruetzleri were the most common sponge species competing with Tubastraea spp. Furthermore, Desmapsamma anchorata and I. arenosa were the main sponge species able to occasionally kill the invasive corals by overgrowth. However, the slow rate of overgrowth by sponges was not able to prevent the fast expansion of the non-indigenous corals. Hence, population studies on native and alien species may help predict the effects of biological invasion on local biodiversity.


Porifera Scleractinian corals Overgrowth Space competition Biological invasion 



The authors express their gratitude to Dr. Eduardo Hajdu (Museu Nacional/UFRJ) for his assistance in the field and sponge identification. We also thank the help of the infrastructure from the Laboratório de Ecologia Marinha Bêntica/UERJ and some students and researchers who contributed to the present study, through assistance in the field and lab, such as Fabrine Costa, Mariana Aguiar, Larissa Marques, and Fernanda França; Dr. Vinícius Lima for help in statistical analysis (Universidade do Estado do Rio de Janeiro), and Diana Ugalde (Universidad Nacional Autónoma de México) for field assistance. We acknowledgments Aurélio B.B. Ferreira for help with the manuscript. Also we thank Dra. Sônia Santos for help and the staff from the Centro de Estudo Ambientais e Desenvolvimento Sustentável-CEADS/UERJ for the use of facilities. AGS and HFMF gratefully acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), which granted their Master scholarships. The authors also thank editors and anonymous reviewers for their helpful comments on an earlier version of this paper.

Compliance with ethical standards


This study was funded by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro/FAPERJ (Grant No. E-26/110.353/2014), CAPES-Ciências do Mar (Grant No. 1137/2010), and Programa de Incentivo à Produção Científica, Técnica e Artística (UERJ).

Conflict of interest

All authors declare they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.


  1. Aerts LAM (1998) Sponge/coral interactions in Caribbean reefs: analysis of overgrowth patterns in relation to species identity and cover. Mar Ecol Prog Ser 175:241–249CrossRefGoogle Scholar
  2. Aerts LAM, van Soest R (1997) Quantification of sponge/coral interactions in a physically stressed reef community, NE Colombia. Mar Ecol Prog Ser 148:125–134CrossRefGoogle Scholar
  3. Agrawal AA, Ackerly DD, Adler F et al (2007) Filling key gaps in population and community ecology. Front Ecol Environ 5:145–152. doi: 10.1890/1540-9295 CrossRefGoogle Scholar
  4. Albins MA (2013) Effects of invasive Pacific red lionfish Pterois volitans versus a native predator on Bahamian coral-reef fish communities. Biol Invasions 15:29–43. doi: 10.1007/s10530-012-0266-1 CrossRefGoogle Scholar
  5. Bakus GJ (2007) Quantitative analysis of marine biological communities: field biology and environment. Wiley, USACrossRefGoogle Scholar
  6. Bastidas C, Bone D (1996) Competitive strategies between Palythoa caribaeorum and Zoanthus sociatus (Cnidaria: Anthozoa) at a reef flat environment in Venezuela. Bull Mar Sci 59:543–555Google Scholar
  7. Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353CrossRefGoogle Scholar
  8. Bell JJ, Barnes DKA (2003) The importance of competitor identity, morphology and ranking methodology to outcomes in interference competition between sponges. Mar Biol 143:415–426. doi: 10.1007/s00227-003-1081-0 CrossRefGoogle Scholar
  9. Bottollier-Curtet M, Planty-Tabacchi AM, Tabacchi E (2013) Competition between young exotic invasive and native dominant plant species: implications for invasions within riparian areas. J Veg Sci 24:1033–1042CrossRefGoogle Scholar
  10. Buss L, Jackson JBC (1979) Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. Am Nat 113:223–234CrossRefGoogle Scholar
  11. Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–364. doi: 10.2307/1942551 CrossRefGoogle Scholar
  12. Castello-Branco C, Menegola C (2014) Sponges from the Ilha Grande Bay, Rio de Janeiro State: two new records for Brazilian south-east region. Mar Biodivers Rec 7:e21. doi: 10.1017/S1755267214000116 CrossRefGoogle Scholar
  13. Castro CB, Pires DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bull Mar Sci 69:357–371Google Scholar
  14. Castro CB, Echeverría CA, Pires DDO et al (1999) Distribuição do bentos (Cnidaria e Echinodermata) em costões rochosos da Baía de Ilha Grande, Rio de Janeiro, Brasil. Oecologia Bras 7:179–194CrossRefGoogle Scholar
  15. Creed JC, Paula AF (2007) Substratum preference during recruitment of two invasive alien corals onto shallow-subtidal tropical rocky shores. Mar Ecol Prog Ser 330:101–111CrossRefGoogle Scholar
  16. Creed JC, Pires D, Figueiredo M (2007) Biodiversidade marinha da Baía de Ilha Grande. Brasília. Ministério do Meio Ambiente, Brasília, Série Biodiversidade 23, pp 417Google Scholar
  17. Creed JC, Fenner D, Sammarco P et al (2016) The invasion of the azooxanthellate coral Tubastraea (Scleractinea: Dendrophylliidae) throughout the world: history, pathways and vectors. Biol Invasions 19:283–305. doi: 10.1007/s10530-016-1279-y CrossRefGoogle Scholar
  18. Da Silva AG, De Paula AF, Fleury BG et al (2014) Eleven years of range expansion of two invasive corals (Tubastraea coccinea and Tubastraea tagusensis) through the southwest Atlantic (Brazil). Estuar Coast Shelf Sci 141:9–16. doi: 10.1016/j.ecss.2014.01.013 CrossRefGoogle Scholar
  19. De Voogd NJ, Becking LE, Hoeksema BW et al (2004) Sponge interactions with spatial competitors in the Spermonde Archipelago. Boll di Mus e Ist di Biol dell’Universita di Genova 68:253–261Google Scholar
  20. de Goeij JM, van Oevelen D, Vermeij MJA et al (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110. doi: 10.1126/science.1241981 CrossRefGoogle Scholar
  21. Diaz C, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci 69:535–546Google Scholar
  22. Duff J, Hay M (2001) The ecology and evolution of marine consumer-prey interactions. In: Marine community ecology. Sunderland, pp 131–157Google Scholar
  23. Fenner D (2001) Biogeography of three Caribbean corals (Scleractinia) and the invasion of Tubastraea coccinea into the Gulf of Mexico. Bull Mar Sci 69:1175–1189Google Scholar
  24. Fenner D, Banks K (2004) Orange cup coral Tubastraea coccinea invades Florida and the Flower Garden Banks, Northwestern Gulf of Mexico. Coral Reefs 23:505–507. doi: 10.1007/s00338-004-0422-x Google Scholar
  25. Fleury BG, Lages BG, Barbosa JP, Kaiser CR, Pinto AC (2008) New hemiketal steroid from the introduced soft coral Chromonephthea braziliensis is a chemical defense against predatory fishes. J Chem Ecol 34:987–993CrossRefGoogle Scholar
  26. González-Rivero M, Yakob L, Mumby PJ (2011) The role of sponge competition on coral reef alternative steady states. Ecol Model 222:1847–1853. doi: 10.1016/j.ecolmodel.2011.03.020 CrossRefGoogle Scholar
  27. Green SJ, Akins JL, Maljković A et al (2012) Invasive lionfish drive Atlantic coral reef fish declines. PlosOne 7(3):e32596. doi: 10.1371/journal.pone.0032596 CrossRefGoogle Scholar
  28. Hajdu E, Peixinho S, Fernandez JC (2011) Esponjas marinhas da Bahia: guia de campo e laboratório. Rio de Janeiro, Museu NacionalGoogle Scholar
  29. Hennessey SM, Sammarco PW (2014) Competition for space in two invasive Indo-Pacific corals-Tubastraea micranthus and Tubastraea coccinea: laboratory experimentation. J Exp Mar Bio Ecol 459:144–150. doi: 10.1016/j.jembe.2014.05.021 CrossRefGoogle Scholar
  30. Ikeda Y, Godoi S, Cacciari P (1989) Um estudo de séries temporais de corrente na Baía de Ilha Grande. In: RelInt Inst Oceanogr USP, pp 1–24Google Scholar
  31. Jackson JB, Buss L (1975) Alleopathy and spatial competition among coral reef invertebrates. Proc Natl Acad Sci USA 72:5160–5163. doi: 10.1073/pnas.72.12.5160 CrossRefGoogle Scholar
  32. Lages BG, Fleury BG, Ferreira CEL et al (2006) Chemical defense of an exotic coral as invasion strategy. J Exp Mar Biol Ecol 328:127–135. doi: 10.1016/j.jembe.2005.07.011 CrossRefGoogle Scholar
  33. Lages BG, Fleury BG, Pinto AC et al (2010) Chemical defenses against generalist fish predators and fouling organisms in two invasive ahermatypic corals in the genus Tubastraea. Mar Ecol 31:473–482. doi: 10.1111/j.1439-0485.2010.00376.x Google Scholar
  34. Lages BG, Fleury BG, Menegola C et al (2011) Change in tropical rocky shore communities due to an alien coral invasion. Mar Ecol Prog Ser 438:85–96. doi: 10.3354/meps09290 CrossRefGoogle Scholar
  35. Lages BG, Fleury BG, Hovell AMC et al (2012) Proximity to competitors changes secondary metabolites of non-indigenous cup corals, Tubastraea spp., in the southwest Atlantic. Mar Biol 159:1551–1559. doi: 10.1007/s00227-012-1941-6 CrossRefGoogle Scholar
  36. Lages BG, Fleury BG, Creed JC (2015) A review of the ecological role of chemical defenses in facilitating biological invasion by marine benthic organisms. In: Atta-ur-Rahman (ed) Studies in natural products chemistry. Elsevier, Amsterdam, pp 1–26Google Scholar
  37. Levine JM, Antonio CMD (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26CrossRefGoogle Scholar
  38. Loh TL, Pawlik JR (2014) Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc Natl Acad Sci USA 111:4151–4156. doi: 10.1073/pnas.1321626111 CrossRefGoogle Scholar
  39. Luter HM, Duckworth AR, Syms C (2007) Cytotoxic and anti-microbial activity of the sponge Iotrochota sp. as a function of size and spatial competitors. Mar Biol Res 3:312–318. doi: 10.1080/17451000701635102 CrossRefGoogle Scholar
  40. Magurran A (1988) Ecological diversity and its measurements. Princeton, New JerseyCrossRefGoogle Scholar
  41. Mantelatto MC, Fleury BG, Menegola C et al (2013) Cost–benefit of different methods for monitoring invasive corals on tropical rocky reefs in the southwest Atlantic. J Exp Mar Bio Ecol 449:129–134. doi: 10.1016/j.jembe.2013.09.009 CrossRefGoogle Scholar
  42. Mantelatto MC, Vidon LF, Silveira RB et al (2016) Host species of the non-indigenous brittle star Ophiothela mirabilis (Echinodermata: Ophiuroidea): an invasive generalist in Brazil? Mar Biodivers Rec 9:8. doi: 10.1186/s41200-016-0013-x CrossRefGoogle Scholar
  43. McLean EL, Yoshioka PM (2007) Associations and interactions between gorgonians and sponges. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research biodiversity, innovation and sustainability. Museu Nacional, Rio de Janeiro, pp 443–448Google Scholar
  44. McLean EL, Rützler K, Pooler PS (2015) Competing for space: factors that lead to sponge overgrowth when interacting with octocoral. Open J Mar Sci 5:64–80. doi: 10.4236/ojms.2015.51007 CrossRefGoogle Scholar
  45. Meurer BC, Lages NS, Pereira OA et al (2010) First record of native species of sponge overgrowing invasive corals Tubastraea coccinea and Tubastraea tagusensis in Brazil. Mar Biodivers Rec 3:e62. doi: 10.1017/S1755267210000527 CrossRefGoogle Scholar
  46. Miranda RJ, Cruz ICS, Barros F (2016) Effects of the alien coral Tubastraea tagusensis on native coral assemblages in a southwestern Atlantic coral reef. Mar Biol 163:45. doi: 10.1007/s00227-016-2819-9 CrossRefGoogle Scholar
  47. Moreira PL, Ribeiro FV, Creed JC (2014) Control of invasive marine invertebrates: an experimental evaluation of the use of low salinity for managing pest corals (Tubastraea spp.). Biofouling 30:639–650. doi: 10.1080/08927014.2014.906583 CrossRefGoogle Scholar
  48. Muricy G, Hajdu E (2006) Porifera brasilis-guia de identificação das esponjas marinhas mais comuns do sudeste do Brasil. Rio de Janeiro. Museu Nacional.Google Scholar
  49. Olenin S, Minchin D, Daunys D (2007) Assessment of biopollution in aquatic ecosystems. Mar Pollut Bull 55:379–394. doi: 10.1016/j.marpolbul.2007.01.010 CrossRefGoogle Scholar
  50. Paula A, Creed JC (2005) Spatial distribution and abundance of nonindigenous coral genus Tubastraea (Cnidaria, Scleractinia) around Ilha Grande, Brazil. Braz J Biol 65:661–673. doi: 10.1590/S1519-69842005000400014 CrossRefGoogle Scholar
  51. Pérez CD, Vila-Nova DA, Santos AM (2005) Associated community with the zoanthid Palythoa caribaeorum (Duchassaing & Michelotti, 1860) (Cnidaria, Anthozoa) from littoral of Pernambuco, Brazil. Hydrobiologia 548:207–215. doi: 10.1007/s10750-005-5441-2 CrossRefGoogle Scholar
  52. Sammarco PW, Atchison AD, Boland GS et al (2012) Geographic expansion of hermatypic and ahermatypic corals in the Gulf of Mexico, and implications for dispersal and recruitment. J Exp Mar Bio Ecol 436–437:36–49. doi: 10.1016/j.jembe.2012.08.009 CrossRefGoogle Scholar
  53. Sampaio CLS, Miranda RJ, Maia-Nogueira R et al (2012) New occurrences of the nonindigenous orange cup corals Tubastraea coccinea and T. tagusensis (Scleractinia: Dendrophylliidae) in Southwestern Atlantic. Check List 8:528–530CrossRefGoogle Scholar
  54. Santos LAH, Ribeiro FV, Creed JC (2013) Antagonism between invasive pest corals Tubastraea spp. and the native reef-builder Mussismilia hispida in the southwest Atlantic. J Exp Mar Bio Ecol 449:69–76. doi: 10.1016/j.jembe.2013.08.017 CrossRefGoogle Scholar
  55. Sebens KP, Miles JS (1988) Sweeper tentacles in a gorgonian octocoral: morphological modifications for interference competition. Biol Bull 175:378–387. doi: 10.2307/1541729 CrossRefGoogle Scholar
  56. Singh A, Thakur NL (2016) Significance of investigating allelopathic interactions of marine organisms in the discovery and development of cytotoxic compounds. Chem Biol Interact 243:135–147CrossRefGoogle Scholar
  57. Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246CrossRefGoogle Scholar
  58. Sullivan B, Faulkner DJ, Webb L (1983) Siphonodictidine, a metabolite of the burrowing sponge Siphonodictyon sp. that inhibits coral growth. Science 221:1175–1176CrossRefGoogle Scholar
  59. Thacker RW, Becerro MA, Lumbang WA et al (1998) Allelopathic interactions between sponges on a tropical reef. Ecology 79:1740–1750. doi: 10.1890/0012-9658 CrossRefGoogle Scholar
  60. Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474Google Scholar
  61. Vitousek PM, Mooney HA, Lubchenco J et al (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  62. Witman J, Dayton P (2001) Rock subtidal communities. In: Bertness M, Gaines S, Hay M (eds) Marine community ecology, Sinauer Associates, Sunderland, pp 339–366Google Scholar
  63. Wulff JL (2006) Resistance vs recovery: morphological strategies of coral reef sponges. Funct Ecol 20:699–708. doi: 10.1111/j.1365-2435.2006.01143.x CrossRefGoogle Scholar
  64. Zalba S, Ziller S (2007) Manejo adaptativo de espécies exóticas invasoras: colocando a teoria em prática. Nat e Conserv 5:16–22Google Scholar
  65. Zar JH (1996) Biostatistical analysis. Prentice-Hall, Eryelwood Cliffs, NJ, pp 663Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de JaneiroMaracanãBrazil
  2. 2.Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de JaneiroMaracanãBrazil
  3. 3.Departamento de GenéticaUniversidade do Estado do Rio de JaneiroMaracanãBrazil
  4. 4.Departamento de EcologiaUniversidade do Estado do Rio de JaneiroMaracanãBrazil

Personalised recommendations