Skip to main content

Advertisement

Log in

Response of native marine sponges to invasive Tubastraea corals: a case study

  • Invasive Species - Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Despite the massive expansion of the invasive corals Tubastraea spp. in the Tropical Western Atlantic, some sponge species may outcompete them on a local scale. The aims of the present study were: (1) to describe the spatiotemporal dynamics of the benthic community and (2) to assess the interactions between marine sponges and invasive Tubastraea corals. Communities were monitored at four locations and four times (2013–2015) in Ilha Grande Bay, southeastern Brazil. The percent cover of the dominant taxa in the benthic communities was calculated and all interactions among native sponges and Tubastraea spp. corals counted within photoquadrats. These in situ observations were used to assess four categories of interaction types. We did not find statistical differences in the benthic communities among locations and times. Turf forming algae and Palythoa caribaeorum represented 60–70% of the benthic community. The number and types of interactions between sponges and corals differed significantly among locations. The most common interaction was contact without dominance. Iotrochota arenosa and Scopalina ruetzleri were the most common sponge species competing with Tubastraea spp. Furthermore, Desmapsamma anchorata and I. arenosa were the main sponge species able to occasionally kill the invasive corals by overgrowth. However, the slow rate of overgrowth by sponges was not able to prevent the fast expansion of the non-indigenous corals. Hence, population studies on native and alien species may help predict the effects of biological invasion on local biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts LAM (1998) Sponge/coral interactions in Caribbean reefs: analysis of overgrowth patterns in relation to species identity and cover. Mar Ecol Prog Ser 175:241–249

    Article  Google Scholar 

  • Aerts LAM, van Soest R (1997) Quantification of sponge/coral interactions in a physically stressed reef community, NE Colombia. Mar Ecol Prog Ser 148:125–134

    Article  Google Scholar 

  • Agrawal AA, Ackerly DD, Adler F et al (2007) Filling key gaps in population and community ecology. Front Ecol Environ 5:145–152. doi:10.1890/1540-9295

    Article  Google Scholar 

  • Albins MA (2013) Effects of invasive Pacific red lionfish Pterois volitans versus a native predator on Bahamian coral-reef fish communities. Biol Invasions 15:29–43. doi:10.1007/s10530-012-0266-1

    Article  Google Scholar 

  • Bakus GJ (2007) Quantitative analysis of marine biological communities: field biology and environment. Wiley, USA

    Book  Google Scholar 

  • Bastidas C, Bone D (1996) Competitive strategies between Palythoa caribaeorum and Zoanthus sociatus (Cnidaria: Anthozoa) at a reef flat environment in Venezuela. Bull Mar Sci 59:543–555

    Google Scholar 

  • Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353

    Article  Google Scholar 

  • Bell JJ, Barnes DKA (2003) The importance of competitor identity, morphology and ranking methodology to outcomes in interference competition between sponges. Mar Biol 143:415–426. doi:10.1007/s00227-003-1081-0

    Article  Google Scholar 

  • Bottollier-Curtet M, Planty-Tabacchi AM, Tabacchi E (2013) Competition between young exotic invasive and native dominant plant species: implications for invasions within riparian areas. J Veg Sci 24:1033–1042

    Article  Google Scholar 

  • Buss L, Jackson JBC (1979) Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. Am Nat 113:223–234

    Article  Google Scholar 

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–364. doi:10.2307/1942551

    Article  Google Scholar 

  • Castello-Branco C, Menegola C (2014) Sponges from the Ilha Grande Bay, Rio de Janeiro State: two new records for Brazilian south-east region. Mar Biodivers Rec 7:e21. doi:10.1017/S1755267214000116

    Article  Google Scholar 

  • Castro CB, Pires DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bull Mar Sci 69:357–371

    Google Scholar 

  • Castro CB, Echeverría CA, Pires DDO et al (1999) Distribuição do bentos (Cnidaria e Echinodermata) em costões rochosos da Baía de Ilha Grande, Rio de Janeiro, Brasil. Oecologia Bras 7:179–194

    Article  Google Scholar 

  • Creed JC, Paula AF (2007) Substratum preference during recruitment of two invasive alien corals onto shallow-subtidal tropical rocky shores. Mar Ecol Prog Ser 330:101–111

    Article  Google Scholar 

  • Creed JC, Pires D, Figueiredo M (2007) Biodiversidade marinha da Baía de Ilha Grande. Brasília. Ministério do Meio Ambiente, Brasília, Série Biodiversidade 23, pp 417

  • Creed JC, Fenner D, Sammarco P et al (2016) The invasion of the azooxanthellate coral Tubastraea (Scleractinea: Dendrophylliidae) throughout the world: history, pathways and vectors. Biol Invasions 19:283–305. doi:10.1007/s10530-016-1279-y

    Article  Google Scholar 

  • Da Silva AG, De Paula AF, Fleury BG et al (2014) Eleven years of range expansion of two invasive corals (Tubastraea coccinea and Tubastraea tagusensis) through the southwest Atlantic (Brazil). Estuar Coast Shelf Sci 141:9–16. doi:10.1016/j.ecss.2014.01.013

    Article  Google Scholar 

  • De Voogd NJ, Becking LE, Hoeksema BW et al (2004) Sponge interactions with spatial competitors in the Spermonde Archipelago. Boll di Mus e Ist di Biol dell’Universita di Genova 68:253–261

    Google Scholar 

  • de Goeij JM, van Oevelen D, Vermeij MJA et al (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110. doi:10.1126/science.1241981

    Article  Google Scholar 

  • Diaz C, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci 69:535–546

    Google Scholar 

  • Duff J, Hay M (2001) The ecology and evolution of marine consumer-prey interactions. In: Marine community ecology. Sunderland, pp 131–157

  • Fenner D (2001) Biogeography of three Caribbean corals (Scleractinia) and the invasion of Tubastraea coccinea into the Gulf of Mexico. Bull Mar Sci 69:1175–1189

    Google Scholar 

  • Fenner D, Banks K (2004) Orange cup coral Tubastraea coccinea invades Florida and the Flower Garden Banks, Northwestern Gulf of Mexico. Coral Reefs 23:505–507. doi:10.1007/s00338-004-0422-x

    Google Scholar 

  • Fleury BG, Lages BG, Barbosa JP, Kaiser CR, Pinto AC (2008) New hemiketal steroid from the introduced soft coral Chromonephthea braziliensis is a chemical defense against predatory fishes. J Chem Ecol 34:987–993

    Article  CAS  Google Scholar 

  • González-Rivero M, Yakob L, Mumby PJ (2011) The role of sponge competition on coral reef alternative steady states. Ecol Model 222:1847–1853. doi:10.1016/j.ecolmodel.2011.03.020

    Article  Google Scholar 

  • Green SJ, Akins JL, Maljković A et al (2012) Invasive lionfish drive Atlantic coral reef fish declines. PlosOne 7(3):e32596. doi:10.1371/journal.pone.0032596

    Article  CAS  Google Scholar 

  • Hajdu E, Peixinho S, Fernandez JC (2011) Esponjas marinhas da Bahia: guia de campo e laboratório. Rio de Janeiro, Museu Nacional

  • Hennessey SM, Sammarco PW (2014) Competition for space in two invasive Indo-Pacific corals-Tubastraea micranthus and Tubastraea coccinea: laboratory experimentation. J Exp Mar Bio Ecol 459:144–150. doi:10.1016/j.jembe.2014.05.021

    Article  Google Scholar 

  • Ikeda Y, Godoi S, Cacciari P (1989) Um estudo de séries temporais de corrente na Baía de Ilha Grande. In: RelInt Inst Oceanogr USP, pp 1–24

  • Jackson JB, Buss L (1975) Alleopathy and spatial competition among coral reef invertebrates. Proc Natl Acad Sci USA 72:5160–5163. doi:10.1073/pnas.72.12.5160

    Article  CAS  Google Scholar 

  • Lages BG, Fleury BG, Ferreira CEL et al (2006) Chemical defense of an exotic coral as invasion strategy. J Exp Mar Biol Ecol 328:127–135. doi:10.1016/j.jembe.2005.07.011

    Article  CAS  Google Scholar 

  • Lages BG, Fleury BG, Pinto AC et al (2010) Chemical defenses against generalist fish predators and fouling organisms in two invasive ahermatypic corals in the genus Tubastraea. Mar Ecol 31:473–482. doi:10.1111/j.1439-0485.2010.00376.x

    Google Scholar 

  • Lages BG, Fleury BG, Menegola C et al (2011) Change in tropical rocky shore communities due to an alien coral invasion. Mar Ecol Prog Ser 438:85–96. doi:10.3354/meps09290

    Article  Google Scholar 

  • Lages BG, Fleury BG, Hovell AMC et al (2012) Proximity to competitors changes secondary metabolites of non-indigenous cup corals, Tubastraea spp., in the southwest Atlantic. Mar Biol 159:1551–1559. doi:10.1007/s00227-012-1941-6

    Article  CAS  Google Scholar 

  • Lages BG, Fleury BG, Creed JC (2015) A review of the ecological role of chemical defenses in facilitating biological invasion by marine benthic organisms. In: Atta-ur-Rahman (ed) Studies in natural products chemistry. Elsevier, Amsterdam, pp 1–26

    Google Scholar 

  • Levine JM, Antonio CMD (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26

    Article  Google Scholar 

  • Loh TL, Pawlik JR (2014) Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc Natl Acad Sci USA 111:4151–4156. doi:10.1073/pnas.1321626111

    Article  CAS  Google Scholar 

  • Luter HM, Duckworth AR, Syms C (2007) Cytotoxic and anti-microbial activity of the sponge Iotrochota sp. as a function of size and spatial competitors. Mar Biol Res 3:312–318. doi:10.1080/17451000701635102

    Article  Google Scholar 

  • Magurran A (1988) Ecological diversity and its measurements. Princeton, New Jersey

    Book  Google Scholar 

  • Mantelatto MC, Fleury BG, Menegola C et al (2013) Cost–benefit of different methods for monitoring invasive corals on tropical rocky reefs in the southwest Atlantic. J Exp Mar Bio Ecol 449:129–134. doi:10.1016/j.jembe.2013.09.009

    Article  Google Scholar 

  • Mantelatto MC, Vidon LF, Silveira RB et al (2016) Host species of the non-indigenous brittle star Ophiothela mirabilis (Echinodermata: Ophiuroidea): an invasive generalist in Brazil? Mar Biodivers Rec 9:8. doi:10.1186/s41200-016-0013-x

    Article  Google Scholar 

  • McLean EL, Yoshioka PM (2007) Associations and interactions between gorgonians and sponges. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research biodiversity, innovation and sustainability. Museu Nacional, Rio de Janeiro, pp 443–448

  • McLean EL, Rützler K, Pooler PS (2015) Competing for space: factors that lead to sponge overgrowth when interacting with octocoral. Open J Mar Sci 5:64–80. doi:10.4236/ojms.2015.51007

    Article  Google Scholar 

  • Meurer BC, Lages NS, Pereira OA et al (2010) First record of native species of sponge overgrowing invasive corals Tubastraea coccinea and Tubastraea tagusensis in Brazil. Mar Biodivers Rec 3:e62. doi:10.1017/S1755267210000527

    Article  Google Scholar 

  • Miranda RJ, Cruz ICS, Barros F (2016) Effects of the alien coral Tubastraea tagusensis on native coral assemblages in a southwestern Atlantic coral reef. Mar Biol 163:45. doi:10.1007/s00227-016-2819-9

    Article  Google Scholar 

  • Moreira PL, Ribeiro FV, Creed JC (2014) Control of invasive marine invertebrates: an experimental evaluation of the use of low salinity for managing pest corals (Tubastraea spp.). Biofouling 30:639–650. doi:10.1080/08927014.2014.906583

    Article  CAS  Google Scholar 

  • Muricy G, Hajdu E (2006) Porifera brasilis-guia de identificação das esponjas marinhas mais comuns do sudeste do Brasil. Rio de Janeiro. Museu Nacional.

  • Olenin S, Minchin D, Daunys D (2007) Assessment of biopollution in aquatic ecosystems. Mar Pollut Bull 55:379–394. doi:10.1016/j.marpolbul.2007.01.010

    Article  CAS  Google Scholar 

  • Paula A, Creed JC (2005) Spatial distribution and abundance of nonindigenous coral genus Tubastraea (Cnidaria, Scleractinia) around Ilha Grande, Brazil. Braz J Biol 65:661–673. doi:10.1590/S1519-69842005000400014

    Article  CAS  Google Scholar 

  • Pérez CD, Vila-Nova DA, Santos AM (2005) Associated community with the zoanthid Palythoa caribaeorum (Duchassaing & Michelotti, 1860) (Cnidaria, Anthozoa) from littoral of Pernambuco, Brazil. Hydrobiologia 548:207–215. doi:10.1007/s10750-005-5441-2

    Article  Google Scholar 

  • Sammarco PW, Atchison AD, Boland GS et al (2012) Geographic expansion of hermatypic and ahermatypic corals in the Gulf of Mexico, and implications for dispersal and recruitment. J Exp Mar Bio Ecol 436–437:36–49. doi:10.1016/j.jembe.2012.08.009

    Article  Google Scholar 

  • Sampaio CLS, Miranda RJ, Maia-Nogueira R et al (2012) New occurrences of the nonindigenous orange cup corals Tubastraea coccinea and T. tagusensis (Scleractinia: Dendrophylliidae) in Southwestern Atlantic. Check List 8:528–530

    Article  Google Scholar 

  • Santos LAH, Ribeiro FV, Creed JC (2013) Antagonism between invasive pest corals Tubastraea spp. and the native reef-builder Mussismilia hispida in the southwest Atlantic. J Exp Mar Bio Ecol 449:69–76. doi:10.1016/j.jembe.2013.08.017

    Article  Google Scholar 

  • Sebens KP, Miles JS (1988) Sweeper tentacles in a gorgonian octocoral: morphological modifications for interference competition. Biol Bull 175:378–387. doi:10.2307/1541729

    Article  Google Scholar 

  • Singh A, Thakur NL (2016) Significance of investigating allelopathic interactions of marine organisms in the discovery and development of cytotoxic compounds. Chem Biol Interact 243:135–147

    Article  CAS  Google Scholar 

  • Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246

    Article  Google Scholar 

  • Sullivan B, Faulkner DJ, Webb L (1983) Siphonodictidine, a metabolite of the burrowing sponge Siphonodictyon sp. that inhibits coral growth. Science 221:1175–1176

    Article  CAS  Google Scholar 

  • Thacker RW, Becerro MA, Lumbang WA et al (1998) Allelopathic interactions between sponges on a tropical reef. Ecology 79:1740–1750. doi:10.1890/0012-9658

    Article  Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J et al (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Witman J, Dayton P (2001) Rock subtidal communities. In: Bertness M, Gaines S, Hay M (eds) Marine community ecology, Sinauer Associates, Sunderland, pp 339–366

    Google Scholar 

  • Wulff JL (2006) Resistance vs recovery: morphological strategies of coral reef sponges. Funct Ecol 20:699–708. doi:10.1111/j.1365-2435.2006.01143.x

    Article  Google Scholar 

  • Zalba S, Ziller S (2007) Manejo adaptativo de espécies exóticas invasoras: colocando a teoria em prática. Nat e Conserv 5:16–22

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice-Hall, Eryelwood Cliffs, NJ, pp 663

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. Eduardo Hajdu (Museu Nacional/UFRJ) for his assistance in the field and sponge identification. We also thank the help of the infrastructure from the Laboratório de Ecologia Marinha Bêntica/UERJ and some students and researchers who contributed to the present study, through assistance in the field and lab, such as Fabrine Costa, Mariana Aguiar, Larissa Marques, and Fernanda França; Dr. Vinícius Lima for help in statistical analysis (Universidade do Estado do Rio de Janeiro), and Diana Ugalde (Universidad Nacional Autónoma de México) for field assistance. We acknowledgments Aurélio B.B. Ferreira for help with the manuscript. Also we thank Dra. Sônia Santos for help and the staff from the Centro de Estudo Ambientais e Desenvolvimento Sustentável-CEADS/UERJ for the use of facilities. AGS and HFMF gratefully acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), which granted their Master scholarships. The authors also thank editors and anonymous reviewers for their helpful comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz G. Fleury.

Ethics declarations

Funding

This study was funded by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro/FAPERJ (Grant No. E-26/110.353/2014), CAPES-Ciências do Mar (Grant No. 1137/2010), and Programa de Incentivo à Produção Científica, Técnica e Artística (UERJ).

Conflict of interest

All authors declare they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: D. Gochfeld.

Reviewed by D. Fenner and an undisclosed expert.

This article is part of the Topical Collection on Invasive Species.

A. G. Silva and H. F. M. Fortunato have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.G., Fortunato, H.F.M., Lôbo-Hajdu, G. et al. Response of native marine sponges to invasive Tubastraea corals: a case study. Mar Biol 164, 78 (2017). https://doi.org/10.1007/s00227-017-3112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3112-2

Keywords

Navigation