Skip to main content

Advertisement

Log in

Elevated temperature has adverse effects on GABA-mediated avoidance behaviour to sediment acidification in a wide-ranging marine bivalve

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Sediment acidification is known to influence the burrowing behaviour of juvenile marine bivalves. Unlike the alteration of behaviour by ocean acidification (OA) observed in many marine organisms, this burrowing response to present-day variation in sediment pH is likely adaptive in that it allows these organisms to avoid shell dissolution and mortality. However, the consequences of global climate stressors on these burrowing responses have yet to be tested. Further, while neurotransmitter interference appears to be linked to the alteration of behaviour by OA in marine vertebrates, the mechanism(s) controlling the burrowing responses of juvenile bivalves in response to present-day variation in sediment acidification remain unknown. We tested the interactive effects of elevated seawater temperature and sediment acidification on juvenile soft-shell clam burrowing behaviour (measured as the proportion of clams burrowed into sediment) to test for effects of elevated temperature on bivalve burrowing responses to sediment acidification. We also examined whether GABAA-like receptor interference could act as a potential biological mechanism underpinning the burrowing responses of these clams to present-day variation in sediment acidification. Results showed that both elevated temperature and gabazine administration reduced the proportion of clams that avoided burrowing into low pH sediment. These results suggest that CO2 effects on neurophysiology (GABAA receptors) can act to mediate adaptive behaviours in juvenile marine bivalves to elevated CO2, but that these behaviours may be adversely affected by elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ansell AD, Barnett PRO, Bodoy A, Massé H (1981) Upper temperature tolerances of some European molluscs. III Cardium glaucum, C. tuberculatum and C. edule. Mar Biol 65:177–183. doi:10.1007/BF00397083

    Article  Google Scholar 

  • Briffa M, de la Haye K, Munday PL (2012) High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar Poll Bull 64:1519–1528. doi:10.1016/j.marpolbul.2012.05.032

    Article  CAS  Google Scholar 

  • Burnell OW, Russell BD, Irving AD, Connell SD (2013) Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Mar Ecol Prog Ser 485:37–46. doi:10.1007/s00227-012-2073-8

    Article  CAS  Google Scholar 

  • Calosi P, DeWit P, Thor P, Dupont S (2016) Will life find a way? Evolution of marine species under global change. Evol Appl 9:1035–1042. doi:10.1111/eva.12418

    Article  Google Scholar 

  • Chivers DP, McCormick MI, Nilsson GE et al. (2014) Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Glob Change Biol 20:515–522. doi:10.1111/gcb.12291

    Article  Google Scholar 

  • Clements JC (2016) Influence of sediment acidification on the burrowing behaviour, post-settlement dispersal, and recruitment of juvenile soft-shell clams (Mya arenaria L.). PhD dissertation, University of New Brunswick

  • Clements JC, Hunt HL (2014) Influence of sediment acidification and water flow on sediment acceptance and dispersal of juvenile soft-shell clams (Mya arenaria L.). J Exp Mar Biol Ecol 453:62–69. doi:10.1016/j.jembe.2014.01.002

    Article  CAS  Google Scholar 

  • Clements JC, Hunt HL (2015) Marine animal behaviour in a high CO2 ocean. Mar Ecol Prog Ser 536:259–279. doi:10.3354/meps11426

    Article  CAS  Google Scholar 

  • Clements JC, Hunt HL (2017) Effects of CO2-driven sediment acidification on infaunal marine bivalves: A synthesis. Mar Pollut Bull. doi:10.1016/j.marpolbul.2017.01.053

  • Clements JC, Woodard KD, Hunt HL (2016) Porewater acidification alters the burrowing behaviour and post-settlement dispersal of juvenile soft-shell clams (Mya arenaria). J Exp Mar Biol Ecol 477:103–111. doi:10.1016/j.jembe.2016.01.013

    Article  Google Scholar 

  • Cochran T, Brown C, Mathew K, Mathiue S, Carroll MA, Catapane EJ (2012) A study of GABA in bivalve molluscs. FASEB J 26:Supplement 762–765.

    Google Scholar 

  • Concas A, Pierobon P, Mostallino MC, Porcu P, Marino G, Minei R, Biggio G (1998) Modulation of gamma-aminobutyric acid (GABA) receptors and the feeding response by neurosteroids in Hydra vulgaris. Neuroscience 85:979–988. doi:10.1016/s0306-4522(97)005150

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743. doi:10.1016/0198-0149(87)90021-5

    Article  CAS  Google Scholar 

  • Dissanayake A, Ishimatsu A (2011) Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeidae). ICES J Mar Sci 68:1147–1154. doi:10.1093/icesjms/fsq188

    Article  Google Scholar 

  • Donelson JM, Wong M, Booth DJ, Munday PL (2016) Transgenerational plasticity of reproduction depends on rate of warming across generations. Evol Appl 9:1072–1081. doi:10.1111/eva.12386

    Article  Google Scholar 

  • Edmond JM (1970) High precision determination of titration alkalinity and total carbon dioxide content of seawater by potentiometric titration. Deep-Sea Res 17:737–750. doi:10.1016/0011-7471(70)90038-0

    CAS  Google Scholar 

  • Flynn AM, Smee DL (2010) Behavioral plasticity of the soft-shell clam, Mya arenaria (L.), in the presence of predators increases survival in the field. J Exp Mar Biol Ecol 383:32–38. doi:10.1016/j.jembe.2009.10.017

    Article  Google Scholar 

  • Green MA, Aller RC (1998) Seasonal patterns of carbonate diagenesis in nearshore terrifenous muds: relation to spring phytoplankton bloom and temperature. J Mar Res 56:1097–1123. doi:10.1357/002224098765173473

    Article  CAS  Google Scholar 

  • Green MA, Waldbusser GG, Reilly SL, Emerson K, O’Donnell S (2009) Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnol Oceanogr 54:1037–1047. doi:10.4319/lo.2009.54.4.1037

    Article  CAS  Google Scholar 

  • Green MA, Waldbusser GG, Hubazc L, Cathcart E, Hall J (2013) Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. Estuar Coasts 36:18–27. doi:10.1007/s12237-012-9549-0

    Article  CAS  Google Scholar 

  • Hales B, Emerson S (1996) Calcite dissolution in sediments of the Ontong-Java Plateau: In situ measurements of pore water O2 and pH. Glob Biogeochem Cy 10:527–541. doi:10.1029/96GB01522

    Article  CAS  Google Scholar 

  • Hamilton TJ, Holcombe A, Tresguerres M (2014) CO2-induces ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc R Soc B 201:20132509. doi:0.1098/rspb.2013.2509

    Google Scholar 

  • Harvey BP, Gwynn-Jones D, Moore PJ (2013) Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol 3:1016–1030. doi:10.1002/ece3.516

    Article  Google Scholar 

  • Heaulme M, Chambon JP, Leyris R, Molimard JC, Wermuth CG, Biziere K (1986) Biochemical characterization of the interaction of 3 pyridazinyl-GABA derivatives with the GABAA receptor-site. Brain Res 384:224–231. doi:10.1016/0006-8993(86)91158-3

    Article  CAS  Google Scholar 

  • Heuer RM, Grosell M (2014) Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am J Physiol Regul Integr Comp Physiol 307:R1061–R1084. doi:10.1152/ajpregu.00064.2014

    Article  CAS  Google Scholar 

  • Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar Ecol Prog Ser 155:269–301. doi:10.3354/meps155269

    Article  Google Scholar 

  • Jessen KR, Mirsky R, Dennison ME, Burnstock G (1979) GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature 281:71–74. doi:10.1038/281071a0

    Article  CAS  Google Scholar 

  • Karhunen T, Airaksinen MS, Tuomisto L, Panula P (1993) Neurotransmitters in the nervous system of Macoma balthica (Bivalvia). J Comp Neurol 334:477–488. doi:10.1002/cne.903340311

    Article  CAS  Google Scholar 

  • Kocot KM, Cannon JT, Todt C et al (2011) Phylogenomics reveals deep molluscan relationships. Nature 477:452–456. doi:10.1038/nature10382

    Article  CAS  Google Scholar 

  • Kroeker K, Kordas R, Crim R, Hendriks I, Ramajo L, Singh G, Duarte C, Gattuso J-P (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol 19:1884–1896. doi:10.1111/gcb.12179

    Article  Google Scholar 

  • Lai F, Jutfelt F, Nilsson G (2015) Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research. Cons Physiol doi:10.1093/conphys/cov018

    Google Scholar 

  • Leduc OHC, Munday PL, Brown GE, Ferrari MCO (2013) Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis. Proc R Soc B 368:20120447. doi:10.1098/rstb.2012.0447

    Google Scholar 

  • Lundquist CJ, Pilditch CA, Cummings VJ (2004) Behaviour controls post-settlement dispersal by the juvenile bivalves Austrovenus stutchburyi and Macomona liliana. J Exp Mar Biol Ecol 306:51–74. doi:10.1016/j.jembe.2003.12.020

    Article  Google Scholar 

  • Marinelli RL, Woodin SA (2002) Experimental evidence for linkages between infaunal recruitment, disturbance, and sediment surface chemistry. Limnol Oceanogr 47:221–229. doi:10.4319/lo.2002.47.1.0221

    Article  CAS  Google Scholar 

  • Marinelli RL, Woodin SA (2004) Disturbance and recruitment: a test of solute and substrate specificity using Mercenaria mercenaria and Capitella sp. 1. Mar Ecol Prog Ser 269:209–221. doi:10.3354/meps269209

    Article  Google Scholar 

  • Mathieu S, Sylvain D, Walden F, Catapane E, Carroll M (2014) GABA is an inhibitory neurotransmitter in ganglia of the bivalve mollusc, Crassostrea virginica. FASEB J 28:Supplement 1059–1064.

    Google Scholar 

  • Mehrbach C, Culberson JE, Hawley JE, Pytkowicz RM (1973) Measurements of apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907. doi:10.4319/lo.1973.18.6.0897

    Article  CAS  Google Scholar 

  • Miller CA, Waldbusser GG (2016) A post-larval stage-based model of hard clam Mercenaria mercenaria development in response to multiple stressors: temperature and acidification severity. Mar Ecol Prog Ser 558:35–49. doi:10.3354/meps11882

    Article  Google Scholar 

  • Monari M, Matozzo V, Foschi J, Cattani O, Serrazanetti GP, Marin MG (2007) Effects of high temperatures on functional responses of haemocytes in the clam Chamelea gallina. Fish Shellfish Immunol 22:98–114. doi:10.1016/j.fsi.2006.03.016

    Article  CAS  Google Scholar 

  • Morley S, Tan KS, Day RW, Martin SM, Pörtner H-O, Peck LS (2009) Thermal dependency of burrowing in three species within the bivalve genus Laternula: a latitudinal comparison. Mar Biol 156:1977–1984. doi:10.1007/s00227-009-1228-8

    Article  Google Scholar 

  • Narusuye K, Nakao T, Abe R, Nagatomi Y, Hirase K, Ozoe Y (2007) Molecular cloning of a GABA receptor subunit from Laodelphax striatella (Fallén) and patch clamp analysis of the homo-oligomeric receptors expressed in a Drosophila cell line. Insect Mol Biol 16:723–733. doi:10.1111/j.1365-2583.2007.00766.x

    Article  CAS  Google Scholar 

  • Nilsson GE, Dixson DL, Domenici P et al. (2012) Near-future carbon dioxide levels alter fish by interfering with neurotransmitter function. Nature Clim Change 2:201–204. doi:10.1038/nclimate1352

    Article  CAS  Google Scholar 

  • Pierobon P, Tino A, Minei R, Marino G (2004) Different roles of GABA and glycine in the modulation of chemosensory responses in Hydra vulgaris (Cnidaria, Hydrozoa). Hydrobiologia 530:59–66. doi:10.1007/s10750-004-2690-4

    Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Tennessee. doi:10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a

  • Pilditch CA, Valanko S, Norkko J, Norkko A (2015) Post-settlement dispersal: the neglected link in maintenance of soft-sediment biodiversity. Biol Lett 11:20140795. doi:10.1098/rsbl.2014.0795

    Article  Google Scholar 

  • Quierós AM, Taylor P, Cowles A, Reynolds A, Widdicombe S, Stahl H (2015) Optical assessment of impact and recovery of sedimentary pH profiles in ocean acidification and carbon capture and storage research. Int J Greenh Gas Control 38:110–120. doi:10.1016/j.ijggc.2014.10.018

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reyes BA, Pendergast JS, Yamazaki S (2008) Mammalian peripheral circadian oscillations are temperature compensated. J Biol Rhythms 23:95–98. doi:10.1177/0748730407311855

    Article  Google Scholar 

  • Rodríguez-Romero A, Jiménez-Tenorio N, Basallote MD, Del Orte MR, Blasco J, Riba I (2014) Predicting the impacts of CO2 leakage from subseabed storage: effects of metal accumulation and toxicity on the model benthic organism Ruditapes philippinarum. Environ Sci Technol 48:12292–12301. doi:10.1021/es501939c

    Article  Google Scholar 

  • Sakurai I, Seto M, Nakao S (1996) Effects of water temperature, salinity and substrata on burrowing behaviors of the three bivalves, Pseudocardium sachalinensis, Mactra chinensis, and Ruditapes philippinarum. Nippon Suisan Gakk 62:878–885. doi:10.2331/suisan.62.878

    Article  Google Scholar 

  • Satoh H, Daido H, Nakamura T (2005) Preliminary analysis of the GABA-induced current in cultured CNS neurons of the cutworm moth, Spodoptera litura. Neurosci Lett 381:125–130. doi:10.1016/j.neulet.2005.02.00

    Article  CAS  Google Scholar 

  • Saunders MA (1999) Earth’s future climate. Phil Trans R Soc Lond A 357:3459–3480. doi:10.1098/rsta.1999.0503

    Article  CAS  Google Scholar 

  • Savage NB (1976) Burrowing activity in Mercenaria mercenaria (L.) and Spisula solidissima (Dillwyn) as a function of temperature and dissolved oxygen. Mar Behav Physiol 3:221–234. doi:10.1080/10236247609378513

    Article  Google Scholar 

  • Taylor P, Lichtschlag A, Toberman M, Sayer MDJ, Reynolds A, Sato T, Stahl H (2015) Impact and recovery of pH in marine sediments subject to a temporary carbon dioxide leak. Int J Greenh Gas Control 38:93–101. doi:10.1016/j.ijggc.2014.09.006

    Article  CAS  Google Scholar 

  • Verdelhos T, Marques JC, Anstácio P (2015) Behavioral and mortality responses of the bivalves Scrobicularia plana and Cerastoderma edule to temperature, as indicator of climate change’s potential impacts. Ecol Indic 58:95–103. doi:10.1016/j.ecolind.2015.05.042

    Article  Google Scholar 

  • Vitellaro-Zuccarello L, De Biasi S (1988) GABA-like immunoreactivity in the pedal ganglia of Mytilus galloprovincialis: light and electron microscopic study. J Comp Neurol 267:516–524. doi:10.1002/cne.902670406

    Article  CAS  Google Scholar 

  • Waldbusser GG, Salisbury JE (2014) Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Ann Rev Mar Sci 6:221–247. doi:10.1146/annurev-marine-121211-172238

    Article  Google Scholar 

  • Watson S-A, Lefevre S, McCormick MI, Domenici P, Nilsson GE, Munday PL (2014) Marine mollusc predator-escape altered by near-future carbon dioxide levels. Proc R Soc B 281:20132377. doi:10.1098/rspb.2013.2377

    Article  Google Scholar 

  • Welsh C, Saunders AC, Carroll M, Catapane E (2014) Presence of inhibitory GABA receptors on serotonin neurons in the bivalve mollusc Crassostrea virginica. FASEB J 28:Supplement 1059–1065.

    Google Scholar 

  • Widdicombe S, Dashfield SL, McNeill CL et al (2009) Effects of CO2 induced seawater acidification on infaunal diversity and sediment nutrient fluxes. Mar Ecol Prog Ser 379:59–75. doi:10.3354/meps07894

    Article  CAS  Google Scholar 

  • Widdicombe S, Spicer JI, Kitidis V (2011) Effects of ocean acidification on sediment fauna. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, New York, pp 176–191

    Google Scholar 

  • Wilson JG, Elkaim B (1991) Tolerances to high temperature of infaunal bivalves and the effect of geographical distribution, position on the shore and season. J Mar Biol Assoc UK 71:169–177. doi:10.1017/S0025315400037486

    Article  Google Scholar 

  • Woodin SA, Marinelli R (1991) Biogenic habitat modification in marine sediments: the importance of species composition and activity. Symp Zool Soc Lond 63:231–250.

    Google Scholar 

  • Zittier ZMC, Hirse T, Pörtner HO (2013) The synergistic effects of increasing temperature and CO2 levels on activity capacity and acid-base balance in the spider crab, Hyas araneus. Mar Biol 160:2049–2062. doi:10.1007/s00227-012-2073-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Trevor Hamilton for lending gabazine expertise, as well as Dr. George Waldbusser and his lab group at Oregon State University for constructive feedback on an earlier version of this manuscript. In the same capacity, we also wish to thank Dr. Bruce MacDonald, Dr. Chris Gray, Dr. Jim Kieffer, and Dr. Keith Dewar at the University of New Brunswick, along with Dr. Chris Harley at the University of British Columbia, and two anonymous reviewers who helped to substantially improve this manuscript. We also thank Dr. Daniel Small at St. Francis Xavier University for advice regarding Q 10 metabolic rate mechanisms. Finally, we thank Jenna MacQuarrie for her assistance in collecting clams and mud, and Marie-Josée Maltais for her assistance in the lab.

Author contributions

JCC conceived the original idea, helped design, set-up and conduct both experiments, analyzed data, and wrote/revised the manuscript. MMB helped design, set-up and conduct Experiment 2, helped analyze data for Experiment 2, and revised the manuscript. HLH helped design both experiments and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff C. Clements.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Funding

This project was funded by a NSERC Discovery Grant to HLH, a NSERC USRA to MMB, and NBIF and UNB graduate scholarships to JCC.

Conflict of interest

We have no competing interests.

Additional information

Reponsible Editor: J. H. Stillman.

Reviewed by Undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 543 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clements, J.C., Bishop, M.M. & Hunt, H.L. Elevated temperature has adverse effects on GABA-mediated avoidance behaviour to sediment acidification in a wide-ranging marine bivalve. Mar Biol 164, 56 (2017). https://doi.org/10.1007/s00227-017-3085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3085-1

Keywords

Navigation