Skip to main content

Advertisement

Log in

A molecular physiology basis for functional diversity of hydrogen peroxide production amongst Symbiodinium spp. (Dinophyceae)

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) production has been demonstrated to play a pivotal role in the photosynthetic stability of higher plants, corals and algae, and considered a primary reactive oxygen species (ROS) associated with the thermal susceptibility of Symbiodinium spp. Here, we simultaneously subjected a large number of Symbiodinium isolates (n = 16) covering broad phylogenetic diversity (clades A, B, D, F) to heat stress and characterized their photosynthetic response via fast repetition rate fluorometry (FRRf) and parallel measurements of H2O2 emissions. Based on their physiological response, isolates clustered into three novel functional groups: (1) thermally tolerant (unchanged photochemical efficiency (F v/F m), electron turnover (τ QA) or H2O2 emission), or (2) thermally susceptible via decreased F v/F m, unchanged τ QA, but increased H2O2, indicating energetically uncoupled PSII (thylakoid membrane instability), versus (3) thermally responsive via decreased F v/F m, increased τ QA and H2O2, indicative of energetically coupled (but downregulated) PSII. There was no correlation between the algal phylogenetic groups and the distribution of isolates amongst these novel functional groups. Two model Symbiodinium isolates for functional groups (1) and (2) (ITS2 type A1, Symbiodinium microadriaticum, and type D1–5, Symbiodinium spp., respectively) were selected to further examine how their different thermal responses corresponded with the expression levels of two genes coding for different metalloforms of superoxide dismutase (MnSOD and NiSOD) that potentially regulate production of H2O2. S. microadriaticum demonstrated the greatest upregulation of MnSOD gene confirming recent suggestions of a role for this metalloform in the antioxidant network associated with thermal stress protection. Assigning Symbiodinium isolates into such functional groups based on coupled molecular-physiological assessment is an important step needed to improve our understanding of Symbiodinium diversity relative to its ecological success in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arif C, Daniels C, Bayer T, Banguera-Hinestroza E, Barbrook A, Howe CJ, LaJeunesse TC, Voolstra CR (2014) Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol Ecol 23:4418–4433

    Article  CAS  Google Scholar 

  • Armoza-Zvuloni R, Shaked Y (2014) Release of hydrogen peroxide and antioxidants by the coral Stylophora pistillata to its external milieu. Biogeosciences 11:4587–4598

    Article  CAS  Google Scholar 

  • Bayer T, Aranda M, Sunagawa S, Yum LK, DeSalvo MK, Lindquist E, Coffroth MA, Voolstra CR, Medina M (2012) Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS One 7:e35269

    Article  CAS  Google Scholar 

  • Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ (2011) Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol Oceanogr 56:927–938

    Article  CAS  Google Scholar 

  • Buxton L, Takahashi S, Hill R, Ralph PJ (2012) Variability in the primary site of photosynthetic damage in Symbiodinium sp.(dinophyceae) exposed to thermal stress. J Phycol 48:117–126

    Article  CAS  Google Scholar 

  • Császár NBM, Seneca FO, Van Oppen MJH (2009) Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress. Mar Ecol Prog Ser 392:93–102

    Article  Google Scholar 

  • Downs CA, McDougall KE, Woodley CM, Fauth JE, Richmond RH, Kushmaro A, Gibb SW, Loya Y, Ostrander GK, Kramarsky-Winter E (2013) Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS One 8:e77173

    Article  CAS  Google Scholar 

  • Dunn SR, Pernice M, Green K, Hoegh-Guldberg O, Dove SG (2012) Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: are the batteries of the reef going to run out? PLoS One 7:e39024

    Article  CAS  Google Scholar 

  • Exton DA, McGenity TJ, Steinke M, Smith DJ, Suggett DJ (2015) Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world. Glob Change Biol 21:1383–1394

    Article  Google Scholar 

  • Fahnenstich H, Scarpeci TE, Valle EM, Flügge UI, Maurino VG (2008) Generation of hydrogen peroxide in chloroplasts of Arabidopsis overexpressing glycolate oxidase as an inducible system to study oxidative stress. Plant Physiol 148:719–729

    Article  CAS  Google Scholar 

  • Grace SC (1990) Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria. Life Sci 47:1875–1886

    Article  CAS  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genom Biol 8:R19

    Article  Google Scholar 

  • Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195

    Article  Google Scholar 

  • Hill R, Ulstrup KE, Ralph PJ (2009) Temperature induced changes in thylakoid membrane thermostability of cultured, freshly isolated, and expelled zooxanthellae from scleractinian corals. Bull Mar Sci 85:223–244

    Google Scholar 

  • Hume BC, D’Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci Rep 5:8562

    Article  CAS  Google Scholar 

  • Kolber ZS, Prášil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. BBA Bioenerget 1367:88–106

    Article  CAS  Google Scholar 

  • Krueger T, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK (2014) Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J Phycol 50:1035–1047

    Article  CAS  Google Scholar 

  • Krueger T, Fisher PL, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Davy SK (2015a) Transcriptomic characterization of the enzymatic antioxidants FeSOD, MnSOD, APX and KatG in the dinoflagellate genus Symbiodinium. BMC Evol Biol 15:1

    Article  CAS  Google Scholar 

  • Krueger T, Hawkins TD, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK (2015b) Differential coral bleaching—contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp Biochem Physiol A Mol Integr Physiol 190:15–25

    Article  CAS  Google Scholar 

  • Ladner JT, Barshis DJ, Palumbi SR (2012) Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D. BMC Evol Biol 12:1

    Article  Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010) Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800

    Article  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov.(Dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol 48:1380–1391

    Article  Google Scholar 

  • LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 53:305–319

    Article  Google Scholar 

  • LaJeunesse TC, Lee SY, Gil-Agudelo DL, Knowlton N, Jeong HJ (2015) Symbiodinium necroappetens sp. nov. (Dinophyceae): an opportunist ‘zooxanthella’ found in bleached and diseased tissues of Caribbean reef corals. Eur J Phycol 50:223–238

    Article  Google Scholar 

  • Lee SY, Jeong HJ, Kang NS, Jang TY, Jang SH, LaJeunesse TC (2015) Symbiodinium tridacnidorum sp. nov., a dinoflagellate common to Indo-Pacific giant clams, and a revised morphological description of Symbiodinium microadriaticum Freudenthal, emended Trench & Blank. Eur. J Phycol 50:155–172

    Article  Google Scholar 

  • Leggat W, Hoegh-Guldberg O, Dove S, Yellowlees D (2007). Analysis of an EST library from the dinoflagellate (Symbiodinium sp.) symbiont of reef-building corals1. ‎J Phycol 43:1010–1021

    Article  CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  Google Scholar 

  • Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377

    Article  Google Scholar 

  • Levin RA, Beltran VH, Hill R, Kjelleberg S, McDougald D, Steinberg PD, van Oppen MJ (2016) Sex, scavengers, and chaperones: transcriptome secrets of divergent symbiodinium thermal tolerances. Mol Biol Evol 33:2201–2215

    Article  CAS  Google Scholar 

  • Lin S, Cheng S, Song B, Zhong X, Lin X, Li W, Li L, Zhang Y, Zhang H, Ji Z, Cai M (2015) The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science 350:691–694

    Article  CAS  Google Scholar 

  • Mayfield AB, Hsiao Y-Y, Chen H-K, Chen C-S (2014) Rubisco expression in the dinoflagellate Symbiodinium sp. is influenced by both photoperiod and endosymbiotic lifestyle. Mar Biotechnol 16:1–14

    Article  Google Scholar 

  • McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME (2012) Transcriptional response of two core photosystem genes in Symbiodinium spp. exposed to thermal stress. PLoS One 7:e50439

    Article  CAS  Google Scholar 

  • McGinty ES, Pieczonka J, Mydlarz LD (2012) Variations in reactive oxygen release and antioxidant activity in multiple Symbiodinium types in response to elevated temperature. Microb Ecol 64:1000–1007

    Article  CAS  Google Scholar 

  • Miller AF (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586:585–595

    Article  CAS  Google Scholar 

  • Oakley CA, Hopkinson BM, Schmidt GW (2014) Mitochondrial terminal alternative oxidase and its enhancement by thermal stress in the coral symbiont Symbiodinium. Coral reefs 33:543–552

    Article  Google Scholar 

  • Parkinson JE, Baums IB (2014) The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral algal associations. Front Microbiol 5:445

    Article  Google Scholar 

  • Parkinson JE, Coffroth MA, LaJeunesse TC (2015) New species of Clade B Symbiodinium (Dinophyceae) from the greater Caribbean belong to different functional guilds: S. aenigmaticum sp. nov., S. antillogorgium sp. nov., S. endomadracis sp. nov., and S. pseudominutum sp. nov. J Phycol 51:850–858

    Article  Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497

    Article  CAS  Google Scholar 

  • Pochon X, Putnam HM, Gates RD (2014) Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution. PeerJ 2:e394

    Article  Google Scholar 

  • Ragni M, Airs RL, Hennige SJ, Suggett DJ, Warner ME, Geider RJ (2010) PSII photoinhibition and photorepair in Symbiodinium (Pyrrhophyta) differs between thermally tolerant and sensitive phylotypes. Mar Ecol Prog Ser 406:57–70

    Article  CAS  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  Google Scholar 

  • Roberty S, Bailleul B, Berne N, Franck F, Cardol P (2014) PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol 204:81–91

    Article  CAS  Google Scholar 

  • Roberty S, Fransolet D, Cardol P, Plumier JC, Franck F (2015) Imbalance between oxygen photoreduction and antioxidant capacities in Symbiodinium cells exposed to combined heat and high light stress. Coral Reefs 34:1063–1073

    Article  Google Scholar 

  • Roberty S, Furla P, Plumier JC (2016) Differential antioxidant response between two Symbiodinium species from contrasting environments. Plant Cell Environ 39:2713–2724

    Article  CAS  Google Scholar 

  • Robison JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (pyrrhophyta) 1. J Phycol 42:568–579

    Article  CAS  Google Scholar 

  • Rodriguez IB, Lin S, Ho J, Ho TY (2016) Effects of trace metal concentrations on the growth of the coral endosymbiont Symbiodinium kawagutii. Front Microbiol 7:82

    Article  Google Scholar 

  • Rosic NN, Pernice M, Rodriguez-Lanetty M, Hoegh-Guldberg O (2011) Validation of housekeeping genes for gene expression studies in Symbiodinium exposed to thermal and light stress. Mar Biotechnol 13:355–365

    Article  CAS  Google Scholar 

  • Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. BBA Mol Cell Res 1763:1755–1766

    CAS  Google Scholar 

  • Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Glob Change Biol 11:1–11

    Article  Google Scholar 

  • Sorek M, Yacobi YZ, Roopin M, Berman-Frank I, Levy O (2013) Photosynthetic circadian rhythmicity patterns of Symbiodium, the coral endosymbiotic algae. Proc R Soc Lond [Biol] 280:20122942

    Article  Google Scholar 

  • Suggett DJ, Warner ME, Smith DJ, Davey P, Hennige S, Baker NR (2008) Photosynthesis and production of hydrogen peroxide by Symbiodinium (pyrrhophyta) phylotypes with different thermal tolerances 1. J Phycol 44:948–956

    Article  CAS  Google Scholar 

  • Suggett DJ, Goyen S, Evenhuis C, Szabó M, Pettay DT, Warner ME, Ralph PJ (2015) Functional diversity of photobiological traits within the genus Symbiodinium appears to be governed by the interaction of cell size with cladal designation. New Phytol 208:370–381

    Article  Google Scholar 

  • Takahashi S, Whitney S, Itoh S, Maruyama T, Badger M (2008) Heat stress causes inhibition of the de novo synthesis of antenna proteins and photobleaching in cultured Symbiodinium. Proc Natl Acad Sci 105:4203–4208

    Article  CAS  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Häggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    Article  CAS  Google Scholar 

  • Walker NJ (2002) A technique whose time has come. Science 296:557

    Article  CAS  Google Scholar 

  • Warner ME, Suggett DJ (2016) The photobiology of Symbiodinium spp.: linking physiological diversity to the implications of stress and resilience. In: Dubinsky Z, Stefano G (eds) The Cnidaria, past, present and future. Springer International Publishing, Switzerland, pp 489–509

    Chapter  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ 19:291–299

    Article  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci 96:8007–8012

    Article  CAS  Google Scholar 

  • Warner ME, LaJeunesse TC, Robison JD, Thur RM (2006) The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnol Oceanogr 51:1887–1897

    Article  Google Scholar 

  • Wietheger A, Fisher PL, Gould KS, Davy SK (2015) Sensitivity to oxidative stress is not a definite predictor of thermal sensitivity in symbiotic dinoflagellates. Mar Biol 162:2067–2077

    Article  CAS  Google Scholar 

  • Wolfe-Simon F, Starovoytov V, Reinfelder JR, Schofield O, Falkowski PG (2006) Localization and role of manganese superoxide dismutase in a marine diatom. Plant Physiol 142:1701–1709

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank two anonymous reviewers whose critical insight further improved this manuscript. In addition, to Paul Brooks and Lucia Mesarosova for technical support with Symbiodinium culturing and also Victor Beltran (Symbiont Culture Facility, Australian Institute of Marine Science, Townsville, Qld., Australia) for supplying strain amur-D-MI originally collected under permit G10-33440.1. DJS was funded by Australian Research Council (ARC) Future Fellowship FT130100202. The authors are particularly grateful to Ms. Rachel Levin, whose insightful comments on an earlier draft improved this MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Pernice.

Additional information

Responsible Editor: L. D. Mydlarz.

Reviewed by T. C. LaJeunesse and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 591 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyen, S., Pernice, M., Szabó, M. et al. A molecular physiology basis for functional diversity of hydrogen peroxide production amongst Symbiodinium spp. (Dinophyceae). Mar Biol 164, 46 (2017). https://doi.org/10.1007/s00227-017-3073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3073-5

Keywords

Navigation