Skip to main content

Advertisement

Log in

Rapid decline and decadal-scale recovery of corals and Chaetodon butterflyfish on Philippine coral reefs

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Environmental disturbances to benthic habitat on coral reefs can affect fish assemblages, with dietary specialists like corallivorous Chaetodon butterflyfishes particularly sensitive to declines in hard coral cover. However, declines in density of corallivorous Chaetodon due to declines in hard coral cover are usually documented for individual environmental disturbances, often with limited quantification of post-disturbance recovery. Here, we documented effects of hard coral loss and recovery on the Chaetodon assemblage for 31 years at four sites in the Philippines. In this long-term “natural experiment”, we documented five environmental disturbance events (two typhoons, two mass coral bleaching events, and one period of destructive fishing) that reduced live branching hard coral cover on average by 61% and density of corallivorous butterflyfish by 47%, with an average duration of decline of 2 years. On average, these disturbance events resulted in an 8% annual decrease in absolute coral cover. We also monitored five periods of hard coral and butterflyfish recovery, with an average 202% increase in branching hard coral cover over 11 years, and a 196% increase in density of corallivorous butterflyfish over 12 years. On average, these recovery periods had a 2.4% annual rate of increase in absolute coral cover. The density of butterflyfish was not significantly affected by marine reserve protection, and thus, changes in butterflyfish density were most likely driven by change in benthic habitat. Assemblage structure of Chaetodon at each site was distinct and remained remarkably consistent for 31 years, despite substantial declines and recovery of coral cover. The difference in the rates of decline and recovery of butterflyfish raises concerns for the persistence of this iconic taxon in the face of increasing frequency and intensity of environmental disturbances to coral reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adjeroud M, Michonneau F, Edmunds PJ, Chancerelle Y, Loma TL, Penin L, Thibaut L, Vidal-Dupiol J, Salvat B, Galzin R (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28:775–780. doi:10.1007/s00338-009-0515-7

    Article  Google Scholar 

  • Alcala AC, Russ GR (2006) No-take marine reserves and reef fisheries management in the Philippines: a new people power revolution. Ambio 35(5):245–254

    Article  Google Scholar 

  • Anderson M, Gorley R, Clarke K (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Babcock RC, Shears NT, Alcala AC, Barrett NS, Edgar GJ, Lafferty KD, McClanahan TR, Russ GR (2010) Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc Natl Acad Sci USA 107:18256–18261. doi:10.1073/pnas.0908012107

    Article  CAS  Google Scholar 

  • Barton K (2015) Package 'MuMIn': Multi-model inference. Version 1.15.1. Published July 3, 2015. Repository: CRAN

  • Bell J, Harmelin-Vivien M, Galzin R (1985) Large scale spatial variation in abundance of butterflyfishes (Chaetodontidae) on Polynesian reefs. In: Proc 5th Int Coral Reef Symp, pp 421–426

  • Berumen M, Pratchett M (2006) Recovery without resilience: persistent disturbance and long-term shifts in the structure of fish and coral communities at Tiahura Reef, Moorea. Coral Reefs 25:647–653. doi:10.1007/s00338-006-0145-2

    Article  Google Scholar 

  • Berumen ML, Pratchett MS, McCormick MI (2005) Within-reef differences in diet and body condition of coral-feeding butterflyfishes (Chaetodontidae). Mar Ecol Prog Ser 287:217–227. doi:10.3354/meps287217

    Article  Google Scholar 

  • Berumen ML, Trip EDL, Pratchett MS, Choat JH (2012) Differences in demographic traits of four butterflyfish species between two reefs of the Great Barrier Reef separated by 1200 km. Coral Reefs 31:169–177. doi:10.1007/s00338-011-0838-z

    Article  Google Scholar 

  • Bozec YM, Doledec S, Kulbicki M (2005) An analysis of fish-habitat associations on disturbed coral reefs: chaetodontid fishes in New Caledonia. J Fish Biol 66:966–982. doi:10.1111/j.1095-8649.2005.00652.x

    Article  Google Scholar 

  • Burke L, Reytar K, Spalding M, Perry A (2012) Reefs at risk revisited in the coral triangle. World Resources Institute, Washington

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York, p 488

    Google Scholar 

  • Buston PM, Jones GP, Planes S, Thorrold SR (2012) Probability of successful larval dispersal declines fivefold over 1 km in a coral reef fish. Proc R Soc B Biol Sci 279:1883–1888. doi:10.1098/rspb.2011.2041

    Article  Google Scholar 

  • Cheal AJ, Wilson SK, Emslie MJ, Dolman AM, Sweatman H (2008) Responses of reef fish communities to coral declines on the Great Barrier Reef. Mar Ecol Prog Ser 372:211–223. doi:10.3354/meps07708

    Article  Google Scholar 

  • Clarke K, Gorley R, Somerfield P, Warwick R (2014) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, Plymouth

    Google Scholar 

  • Cole AJ, Pratchett MS, Jones GP (2008) Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fish 9:286–307. doi:10.1111/j.1467-2979.2008.00290.x

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Animal Ecol 77:802–813. doi:10.1111/j.1365-2656.2008.01390.x

    Article  CAS  Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688. doi:10.1038/nature03906

    Article  CAS  Google Scholar 

  • Emslie M, Cheal A, Sweatman H, Delean S (2008) Recovery from disturbance of coral and reef fish communities on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 371:177–190. doi:10.3354/meps07657

    Article  Google Scholar 

  • Emslie MJ, Pratchett MS, Cheal AJ (2011) Effects of different disturbance types on butterflyfish communities of Australia’s Great Barrier Reef. Coral Reefs 30:461–471. doi:10.1007/s00338-011-0730-x

    Article  Google Scholar 

  • Fox HE, Caldwell RL (2006) Recovery from blast fishing on coral reefs: a tale of two scales. Ecol Appl 16:1631–1635. doi:10.1890/1051-0761(2006)016[1631:RFBFOC]2.0.CO;2

    Article  Google Scholar 

  • Graham NAJ, Wilson SK, Pratchett MS, Polunin NVC, Spalding MD (2009) Coral mortality versus structural collapse as drivers of corallivorous butterflyfish decline. Biodivers Conserv 18:3325–3336. doi:10.1007/s10531-009-9633-3

    Article  Google Scholar 

  • Graham NAJ, Nash KL, Kool JT (2011) Coral reef recovery dynamics in a changing world. Coral Reefs 30:283–294. doi:10.1007/s00338-010-0717-z

    Article  Google Scholar 

  • Graham NAJ, Jennings S, MacNeil MA, Mouillot D, Wilson SK (2015) Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94–97. doi:10.1038/nature14140

    Article  CAS  Google Scholar 

  • Halford A, Cheal AJ, Ryan D, Williams DM (2004) Resilience to large-scale disturbance in coral and fish assemblages on the Great Barrier Reef. Ecology 85:1892–1905. doi:10.1890/03-4017

    Article  Google Scholar 

  • Harmelin-Vivien M (1989) Implications of feeding specialization on the recruitment processes and community structure of butterflyfishes. Environ Biol Fishes 25:101–110. doi:10.1007/bf00002204

    Article  Google Scholar 

  • Harmelin-Vivien ML, Bouchon-Navaro Y (1983) Feeding diets and significance of coral feeding among Chaetodontid fishes in Moorea (French Polynesia). Coral Reefs 2:119–127. doi:10.1007/bf02395282

    Article  Google Scholar 

  • Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evolut 25:633–642. doi:10.1016/j.tree.2010.07.011

    Article  Google Scholar 

  • Jones GP, McCormick MI, Srinivasan M, Eagle JV (2004) Coral decline threatens fish biodiversity in marine reserves. Proc Natl Acad Sci USA 101:8251–8253

    Article  CAS  Google Scholar 

  • Jones G, Almany GR, Russ GR, Sale P, Steneck R, van Oppen M, Willis BL (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307–325. doi:10.1007/s00338-009-0469-9

    Article  Google Scholar 

  • Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. doi:10.1038/ngeo779

    Article  CAS  Google Scholar 

  • Kulbicki M, Bozec YM (2005) The use of butterflyfish (Chaetodontidae) species richness as a proxy of total species richness of reef fish assemblages in the Western and Central Pacific. Aquat Conserv Mar Freshw Ecosyst 15:S127–S141. doi:10.1002/aqc.692

    Article  Google Scholar 

  • Lamy T, Galzin R, Kulbicki M, Claudet J (2015) Three decades of recurrent declines and recoveries in corals belie ongoing change in fish assemblages. Coral Reefs. doi:10.1007/s00338-015-1371-2

    Google Scholar 

  • Lawton RJ, Cole AJ, Berumen ML, Pratchett MS (2012) Geographic variation in resource use by specialist versus generalist butterflyfishes. Ecography 35:566–576. doi:10.1111/j.1600-0587.2011.07326.x

    Article  Google Scholar 

  • Lawton RJ, Pratchett MS, Delbeek JC (2013) Harvesting of butterflyfishes for aquarium and artisanal fisheries. In: Pratchett MS, Berumen ML, Kapoor BG (eds) Biology of butterflyfishes. CRC Press, Boca Raton, p 362

    Google Scholar 

  • Leahy SM, Russ GR, Abesamis RA (2015) Primacy of bottom-up effects on a butterflyfish assemblage. Mar Freshw Res. doi:10.1071/MF15012

    Google Scholar 

  • Lester SE, Halpern BS, Grorud-Colvert K, Lubchenco J, Ruttenberg BI, Gaines SD, Airame S, Warner RR (2009) Biological effects within no-take marine reserves: a global synthesis. Mar Ecol Prog Ser 384:33–46

    Article  Google Scholar 

  • MacNeil MA, Graham NAJ, Cinner JE, Wilson SK, Williams ID, Maina J, Newman S, Friedlander AM, Jupiter S, Polunin NVC, McClanahan TR (2015) Recovery potential of the world’s coral reef fishes. Nature 520:341–344. doi:10.1038/nature14358

    Article  CAS  Google Scholar 

  • Marler TE (2014) Pacific island tropical cyclones are more frequent and globally relevant, yet less studied. Front Environ Sci. doi:10.3389/fenvs.2014.00042

    Google Scholar 

  • McClanahan TR (2000) Recovery of a coral reef keystone predator, Balistapus undulatus, in East African marine parks. Biol Conserv 94:191–198. doi:10.1016/S0006-3207(99)00176-7

    Article  Google Scholar 

  • McLeod E, Moffitt R, Timmermann A, Salm R, Menviel L, Palmer MJ, Selig ER, Casey KS, Bruno JF (2010) Warming seas in the coral triangle: coral reef vulnerability and management implications. Coast Manag 38:518–539. doi:10.1080/08920753.2010.509466

    Article  Google Scholar 

  • Menge BA, Sutherland JP (1987) Community regulation—variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am Nat 130:730–757. doi:10.1086/284741

    Article  Google Scholar 

  • Molloy PP, McLean IB, Côté IM (2009) Effects of marine reserve age on fish populations: a global meta-analysis. J Appl Ecol 46:743–751. doi:10.1111/j.1365-2664.2009.01662.x

    Article  Google Scholar 

  • Nyström M, Graham NAJ, Lokrantz J, Norström AV (2008) Capturing the cornerstones of coral reef resilience: linking theory to practice. Coral Reefs 27:795–809. doi:10.1007/s00338-008-0426-z

    Article  Google Scholar 

  • Ochavillo D, Hodgson G, Shuman C, Ruz R (2004) Status of the Philippines marine aquarium fish trade. Coastal Resource Management Project of the Department of Environment and Natural Resources, Cebu City, Philippines

  • Öhman MC, Rajasuriya A, Svensson S (1998) The use of butterflyfishes (Chaetodontidae) as bio-indicators of habitat structure and human disturbance. Ambio 27:708–716

    Google Scholar 

  • Padin JIM, Santos TR, Sienes PM, Utzurrum J, Ginzel F (2013) Fishes of the Dumaguete Public Market, Negros Oriental, Philippines Federation of Institutions for Marine and Freshwater Sciences (Philippines) 45th annual meeting, Cebu City, Philippines

  • Pratchett MS, Wilson SK, Berumen ML, McCormick MI (2004) Sublethal effects of coral bleaching on an obligate coral feeding butterflyfish. Coral Reefs 23:352–356

    Article  Google Scholar 

  • Pratchett MS, Wilson SK, Baird AH (2006) Declines in the abundance of Chaetodon butterflyfishes following extensive coral depletion. J Fish Biol 69:1269–1280. doi:10.1111/j.1095-8649.2006.01161.x

    Article  Google Scholar 

  • Pratchett MS, Munday P, Wilson SK, Graham NA, Cinner JE, Bellwood DR, Jones GP, Polunin NV, McClanahan T (2008a) Effects of climate-induced coral bleaching on coral-reef fishes. Ecol Econ Cons Oceanogr Mar Biol Annu Rev 46:251–296

    Google Scholar 

  • Pratchett MS, Berumen ML, Marnane MJ, Eagle JV, Pratchett DJ (2008b) Habitat associations of juvenile versus adult butterflyfishes. Coral Reefs 27:541–551. doi:10.1007/s00338-008-0357-8

    Article  Google Scholar 

  • Pratchett MS, Hoey AS, Wilson SK, Messmer V, Graham NAJ (2011) Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3:424–452

    Article  Google Scholar 

  • Raymundo LJH, Maypa AP (2003) Impacts of the 1997–98 ENSO event: responses of the Apo Island Marine Reserve. Philipp Sci 40:164–176

    Google Scholar 

  • Reese ES (1981) Predation on corals by fishes of the Family Chaetodontidae: implications for conservation and management of coral reef ecosystems. Bull Mar Sci 31:594–604

    Google Scholar 

  • Russ GR, Alcala AC (1989) Effects of intense fishing pressure on an assemblage of coral reef fishes. Mar Ecol Prog Ser 56:13–27

    Article  Google Scholar 

  • Russ GR, Alcala AC (1998a) Natural fishing experiments in marine reserves 1983–1993: community and trophic responses. Coral Reefs 17:383–397. doi:10.1007/s003380050144

    Article  Google Scholar 

  • Russ GR, Alcala AC (1998b) Natural fishing experiments in marine reserves 1983–1993: roles of life history and fishing intensity in family responses. Coral Reefs 17:399–416. doi:10.1007/s003380050146

    Article  Google Scholar 

  • Russ GR, Bergseth BJ, Rizzari JR, Alcala AC (2015a) Decadal-scale effects of benthic habitat and marine reserve protection on Philippine goatfish (F: Mullidae). Coral Reefs 34:773–778. doi:10.1007/s00338-015-1296-9

    Article  Google Scholar 

  • Russ GR, Questel S-LA, Rizzari JR, Alcala AC (2015b) The parrotfish–coral relationship: refuting the ubiquity of a prevailing paradigm. Mar Biol 162:2029–2045. doi:10.1007/s00227-015-2728-3

    Article  Google Scholar 

  • Russ GR, Miller KI, Rizzari JR, Alcala AC (2015c) Long-term no-take marine reserve and benthic habitat effects on coral reef fishes. Mar Ecol Prog Ser 529:233–248. doi:10.3354/meps11246

    Article  Google Scholar 

  • Sano M (1989) Feeding habits of Japanese butterfyfishes (Chaetodontidae). Environ Biol Fishes 25:195–203. doi:10.1007/bf00002212

    Article  Google Scholar 

  • Sano M, Shimizu M, Nose Y (1984) Changes in structure of coral reef fish communities by destruction of hermatypic corals: observational and experimental views. Pac Sci 38:51–79

    Google Scholar 

  • Selig ER, Bruno JF (2010) A global analysis of the effectiveness of marine protected areas in preventing coral loss. PLoS ONE 5:e9278. doi:10.1371/journal.pone.0009278

    Article  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Tissot BN, Hallacher LE (2003) Effects of aquarium collectors on coral reef fishes in Kona, Hawaii. Conserv Biol 17(6):1759–1768. doi:10.1111/j.1523-1739.2003.00379.x

    Article  Google Scholar 

  • Trapon ML, Pratchett MS, Penin L (2011) Comparative effects of different disturbances in coral reef habitats in Moorea, French Polynesia. J Mar Biol. doi:10.1155/2011/807625

    Google Scholar 

  • Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biol 12:2220–2234. doi:10.1111/j.1365-2486.2006.01252.x

    Article  Google Scholar 

  • Wood S, Scheipl F (2016) Package 'gamm4': Generalized Additive Mixed Models using 'mgcv' and 'lme4'. Version 0.2-4. Published September 17, 2016. Repository: CRAN

  • Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. In: Gail M, Krickeberg K, Sarnet J, Tsiatis A, Wong W (eds) Springer Science and Business Media, LLC

Download references

Acknowledgements

Thanks to J. Rizarri and R. Jones for statistical advice, to A.C. Alcala for 43 years of enthusiastic community facilitation of marine resource management, and to two anonymous reviewers, whose comments greatly improved the manuscript.

Author contributions

GRR conceived of and designed the study and collected the data; SML analysed the data and wrote the manuscript. GRR provided editorial advice.

Funding

Financial support to G.R.R. for this research was provided by the United Nations Environment Programme and Natural Resources Ministry Council (1983), the Great Barrier Reef Marine Park Authority (1985), a Pew Fellowship (1999–2000), an Australian Research Council Discovery grant (2002–2004), and funding from the Australian Research Council Centre of Excellence in Coral Reef Studies (2006–2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susannah M. Leahy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any work involving the care or use of animals.

Additional information

Responsible Editor: K. Clements.

Reviewed by Undisclosed experts.

Garry R. Russ and Susannah M. Leahy have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russ, G.R., Leahy, S.M. Rapid decline and decadal-scale recovery of corals and Chaetodon butterflyfish on Philippine coral reefs. Mar Biol 164, 29 (2017). https://doi.org/10.1007/s00227-016-3056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-3056-y

Keywords

Navigation