Skip to main content
Log in

Increased temperature, rather than elevated CO2, modulates the carbon assimilation of the Arctic kelps Saccharina latissima and Laminaria solidungula

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Ocean acidification and warming are affecting with special intensity the Arctic Ocean. Arctic coastal ecosystems are dominated by kelp forests with a high biomass production, which are expected to be directly affected by the increases in CO2 and temperature. This study presents the different physiological responses of the Arctic kelps Saccharina latissima and Laminaria solidungula from Kongsfjorden (Svalbard) cultured at 4 and 9 °C in combination with current (390 ppm) and increased (1200 ppm) levels of atmospheric CO2. Both species were largely unaffected by increased CO2 conditions. Carbon fixation was not influenced by CO2, indicating that photosynthesis was C-saturated at present levels, and 13C isotopic discrimination values from algal tissue suggested no deactivation of carbon concentrating mechanisms at increased CO2 levels. Inhibition of photosynthesis by carbonic anhydrases (CAs) inhibitors highlighted the important role of external CAs in inorganic carbon acquisition in Arctic kelps. Saccharina latissima showed a significantly higher growth rate at 9 °C than at 4 °C, probably due to the decrease in the dark respiration rate observed. Growth rate of L. solidungula was not affected by temperature or CO2, and increases in photosynthesis at 9 °C could be partially related to a higher dissolved organic carbon release rate. The photochemical performance of both species was not altered by any of the treatments. These results suggest that S. latissima might be more benefited than L. solidungula in a future warmer Arctic, while both populations seem to be resilient to higher CO2 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilera J, Bischof K, Karsten U, Hanelt D, Wiencke C (2002) Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord: II. Pigment accumulation and biochemical defence systems. Mar Biol 140:1087–1095

    Article  CAS  Google Scholar 

  • Axelsson L, Mercado JM, Figueroa FL (2000) Utilization of HCO3 at high pH by the brown macroalga Laminaria saccharina. Eur J Phycol 35:53–59

    Article  Google Scholar 

  • Barrón C, Apostolaki ET, Duarte CM (2012) Dissolved organic carbon release by marine macrophytes. Biogeosci Discuss 9:1529–1555

    Article  Google Scholar 

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schubert H, Schumann R, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86

    Article  Google Scholar 

  • Bartsch I, Paar M, Fredriksen S, Schwanitz M, Daniel C, Hop H, Wiencke C (2016) Changes in kelp fores biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol. doi:10.1007/s00300-015-1870-1

    Google Scholar 

  • Beer S, Larsson C, Poryan O, Axelsson L (2000) Photosynthetic rates of Ulva (Chlorophyta) measured by pulse amplitude modulated (PAM) fluorescence. Eur J Phycol 35:69–74

    Article  Google Scholar 

  • Björk M, Haglund K, Ramazanov Z, Pedersen M (1993) Inducible mechanisms for HCO3 utilization and repression of photorespiration in protoplast and thalli of three species of Ulva (Chlorophyta). J Phycol 29:166–173

    Article  Google Scholar 

  • Bolton JJ, Lüning K (1982) Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94

    Article  Google Scholar 

  • Boudreau BP (1997) Diagenetic models and their implementation modelling transport and reactions in aquatic sediments. Springer, Berlin

    Book  Google Scholar 

  • Boyd PW, Dillingham PW, McGraw CM, Armstrong EA, Cornwall CE, Y-y Feng, Hurd CL, Gault-Ringold M, Roleda MY, Timmins-Schiffman E, Nunn BL (2016) Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nat Clim Change 6:207–213

    Google Scholar 

  • Brown MB, Edwards MS, Kim KY (2014) Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin. Strongylocentrotus purpuratus. Algae 29(3):203–215

    Article  Google Scholar 

  • Carmack E, Wassmann P (2006) Food webs and physical–biological coupling on pan-arctic shelves: comprehensive perspectives, unifying concepts and future research. Prog Oceanogr 71:446–477

    Article  Google Scholar 

  • Cornwall CE, Hepburn CD, Pritchard D, Currie KI, McGraw CM, Hunter KA, Hurd CL (2012) Carbon use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. J Phycol 48:137–144

    Article  CAS  Google Scholar 

  • Cottier F, Tverberg V, Inall M, Svendsen H, Nilsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J Geophys Res 110:C12005. doi:10.1029/2004JC002757

    Article  Google Scholar 

  • Cross WE, Wilce RT, Fabuan MF (1987) Effects of experimental releases of oil and dispersed oil on Arctic nearshore macrobenthos. III. Macroalgae. Arctic 40:211–219

    Google Scholar 

  • Davison IR, Greene RM, Podolak EJ (1991) Temperature acclimation of respiration and photosynthesis in the brown alga Laminaria saccharina. Mar Biol 110:449–454

    Article  Google Scholar 

  • del Giorgio PA, Williams PJB (2005) The global significance of respiration in aquatic ecosystems: from single cells to the biosphere. In: Respiration in aquatic ecosystems, Chapter 14. Oxford University Press, Oxford. doi:10.1093/acprof:oso/9780198527084.003.0014

  • Dunton KH (1985) Growth of dark-exposed Laminaria saccharina (L.) Lamour. and Laminaria solidungula J.Ag. (Laminariales: Phaeophyta) in the Alaskan Beaufort Sea. J Exp Mar Biol Ecol 94:181–189

    Article  Google Scholar 

  • Dunton KH, Schell DM (1986) Seasonal carbon budget and growth of Laminaria solidungula in the Alaskan High Arctic. Mar Ecol Prog Ser 31:57–66

    Article  Google Scholar 

  • Egleston ES, Sabine CL, Morel FMM (2010) Revelle revisited: buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Global Biogeochem Cycles 24:GB1002. doi:10.1029/2008gb003407

    Article  Google Scholar 

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215

    Article  Google Scholar 

  • Feikema WO, Marosvölgyi MA, Lavaud J, van Gorkom HJ (2006) Cyclic electron transfer in photosystem II in the marine diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1757:829–834

    Article  CAS  Google Scholar 

  • Fernández PA, Hurd CL, Roleda MY (2014) Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. J Phycol 50:998–1008

    Article  Google Scholar 

  • Flores-Moya A, Fernandez JA (1998) The role of external carbonic anhydrase in the photosynthetic use of inorganic carbon in the deep-water alga Phyllariopsis purpurascens (Laminariales, Phaeophyta). Planta 207:115–119

    Article  CAS  Google Scholar 

  • Fredriksen S, Bartsch I, Wiencke C (2014) New additions to the benthic marine flora of Kongsfjorden, western Svalbard, and comparison between 1996/1998 and 2012/2013. Bot Mar 57:203–216

    Article  Google Scholar 

  • Gao K, Helbling EW, Häder D-P, Hutchins DA (2012) Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar Ecol Prog Ser 470:167–189

    Article  CAS  Google Scholar 

  • García-Sánchez MJ, Delgado-Huertas A, Fernández JA, Flores-Moya A (2016) Photosynthetic use of inorganic carbon in deep-water kelps from the Strait of Gibraltar. Photosynth Res 127:295–305

    Article  Google Scholar 

  • Genty B, Briantais J, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–89

    Article  CAS  Google Scholar 

  • Giordano M, Maberly SC (1989) Distribution of carbonic anhydrase in British marine macroalgae. Oecologia 81:534–539

    Article  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Ann Rev Plant Biol 56:99–131

    Article  CAS  Google Scholar 

  • Gordillo FJL, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70

    Article  CAS  Google Scholar 

  • Gordillo FJL, Aguilera J, Jimenez C (2006) The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer. J Exp Bot 57:2661–2671

    Article  CAS  Google Scholar 

  • Gordillo FJL, Aguilera J, Wiencke C, Jiménez C (2015) Ocean acidification modulates the response of two Arctic kelps to ultraviolet radiation. J Plant Physiol 173:41–50

    Article  CAS  Google Scholar 

  • Gordillo FJL, Carmona R, Viñegla B, Wiencke C, Jiménez C (2016) Effects of simultaneous increase in temperature and ocean acidification on biochemical composition and photosynthetic performance of common macroalgae from Kongsfjorden (Svalbard). Polar Biol. doi:10.1007/s00300-016-1897-y

    Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations. Part II. Anal 77:661–671

    CAS  Google Scholar 

  • Guzinski J, Mauger S, Cock JM, Valero M (2016) Characterization of newly developed expressed sequence tag-derived microsatellite markers revealed low genetic diversity within and low connectivity between European Saccharina latissima populations. J Appl Phycol. doi:10.1007/s10811-016-0806-7

    Google Scholar 

  • Henley WJ, Dunton KH (1997) Effects of nitrogen supply and continuous darkness on growth and photosynthesis of the Arctic kelp Laminaria solidungula. Limnol Oceanogr 42:209–216

    Article  CAS  Google Scholar 

  • Hepburn CD, Pritchard DW, Cornwall CE, McLeod RJ, Beardall J, Raven JA, Hurd CL (2011) Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Global Change Biol 17:2488–2497

    Article  Google Scholar 

  • Holding JM, Duarte CM, Sanz-Martín M, Mesa E, Arrieta JM, Chierici M, Hendriks IE, García-Corral LS, Regaudie-de-Gioux A, Delgado A, Reigstad M, Wassmann P, Agustí S (2015) Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean. Nat clim change 5:1079–1082

    Article  CAS  Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B et al (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Article  Google Scholar 

  • Hop H, Wiencke C, Vögele B, Kovaltchouk NA (2012) Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Bot Mar 55:399–414

    Article  Google Scholar 

  • Iñiguez C, Carmona R, Lorenzo MR, Niell FX, Wiencke C, Gordillo FJL (2015) Increased CO2 modifies the carbon balance and the photosynthetic yield of two common Arctic brown seaweeds: Desmarestia aculeata and Alaria esculenta. Polar Biol. doi:10.1007/s00300-015-1724-x

    Google Scholar 

  • IPCC (2014) The intergovernmental panel on climate change. Climate change 2014: Synthesis report. Summary for policymakers. Cambridge University Press, Cambridge

  • Johnston AM, Raven JA (1990) Effects of culture in high CO2 on the photosynthetic physiology of Fucus serratus. Br Phycol J 25:75–82

    Article  Google Scholar 

  • Klenell M, Snoeijs P, Pedersen M (2004) Active carbon in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane. Hydrobiologia 514:41–53

    Article  CAS  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19:103–132

    Article  Google Scholar 

  • Korb RE, Gerard VA (2000) Effects of concurrent low temperature and low nitrogen supply on polar and temperate seaweeds. Mar Ecol Prog Ser 198:73–82

    Article  Google Scholar 

  • Krause-Jensen D, Duarte CM (2014) Expansion of vegetated coastal ecosystems in the future. Front Mar Sci 1:77

    Article  Google Scholar 

  • Kristensen E, Andersen F (1987) Determination of organic carbon in marine sediments: a comparison of two CHN-analyzer methods. J Exp Mar Bio Ecol 109:15–23

    Article  CAS  Google Scholar 

  • Larsson C, Axelsson L (1999) Bicarbonate uptake and utilization in macroalgae. Eur J Phycol 34:79–86

    Article  Google Scholar 

  • Laws EA (1991) Photosynthetic quotients, new production, and net community production in the open ocean. Deep-Sea Res 38:143–167

    Article  CAS  Google Scholar 

  • Maberly SC, Raven JA, Johnston AM (1992) Discrimination between 12C and 13C by marine plants. Oecologia 91:481–492

    Article  Google Scholar 

  • Magnusson G, Larsson C, Axelsson L (1996) Effects of high CO2 treatment on nitrate and ammonium uptake by Ulva lactuca grown in different nutrient regimes. Sci Mar 60:179–189

    CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Mercado JM, Figueroa FL, Niell FX (1997) Regulation of the mechanism for HCO3 use by the inorganic carbon level in Porphyra leucosticta Thur. in Le Jolis (Rhodophyta). Planta 210:319–325

    Article  Google Scholar 

  • Mercado JM, Gordillo FJL, Niell FX, Figueroa FL (1999) Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol 11:455–461

    Article  Google Scholar 

  • Mercado JM, Andría JR, Pérez-Llorens JL, Vergara JL, Axelsson L (2006) Evidence for a plasmalemma-based CO2 concentrating mechanism in Laminaria saccharina. Photosynth Res 88:259–268

    Article  CAS  Google Scholar 

  • Moroney JV, Husic DH, Tolvert NE (1985) Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol 77:177–183

    Article  Google Scholar 

  • Müller R, Laepple T, Bartsch I, Wiencke C (2009) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638

    Article  Google Scholar 

  • Olischläger M, Iñiguez C, Gordillo FJL, Wiencke C (2014) Biochemical composition of temperate and Arctic populations of Saccharina latissima after exposure to increased pCO2 and temperature reveals ecotypic variation. Planta 240:1213–1224

    Article  Google Scholar 

  • Olischläger M, Iñiguez C, Koch K, Wiencke C, Gordillo FJL (2016) Increased pCO2 and temperature reveal ecotypic differences in growth and photosynthetic performance of temperate and Arctic populations of Saccharina latissima. Planta. doi:10.1007/s00425-016-2594-3

    Google Scholar 

  • Paar M, Voronkov A, Hop H, Brey T, Bartsch I, Schwanitz M, Wiencke C, Lebreton B, Asmus R, Asmus H (2015) Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. Polar Biol. doi:10.1007/s00300-015-1760-6

    Google Scholar 

  • Pancic M, Hansen PJ, Tammilehto A, Lundholm N (2015) Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus. Biogeosci 12:4235–4244

    Article  Google Scholar 

  • Parages M, Heinrich S, Wiencke C, Jiménez C (2013) Rapid phosphorylation of MAP kinase-like proteins in two species of Arctic kelps in response to temperature and UV radiation stress. Environ Exp Bot 91:30–37

    Article  CAS  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and Collections of Algae. Proceedings of the U.S.-Japan conference, Hakone 1966. Japanese Society for Plant Physiology, Tokyo, pp 63–75

  • Rautenberger R, Fernández PA, Strittmatter M, Heesch S, Cornwall CE, Hurd CL, Roleda MY (2015) Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). Ecol Evol 5(4):874–888

    Article  Google Scholar 

  • Raven JA, Beardall J (2003) Carbon acquisition mechanisms of algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Larkum AW, Douglas SE, Raven JA (eds) Photosynthesis in algae: advances in photosynthesis and respiration, vol 14. Kluwer Academic Publishers, Dordrecht, pp 225–244

    Chapter  Google Scholar 

  • Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110:441–461

    Article  CAS  Google Scholar 

  • Raven JA, Johnston AM, Kübler JE, Korb R, McInroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Vanderklift M, Fredriksen S, Dunton KH (2002a) Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct Plant Biol 29:335–378

    Article  Google Scholar 

  • Raven JA, Johnston AM, Kübler JE, Korb J, McInroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Clayton MN, Vanderklift M, Fredriksen S, Dunton KH (2002b) Seaweeds in cold seas: evolution and carbon acquisition. Ann Bot 90:525–536

    Article  CAS  Google Scholar 

  • Richier S, Fiorini S, Kerros ME, von Dassow P, Gattuso JP (2011) Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: from physiology to molecular level. Mar Biol 158:551–560

    Article  CAS  Google Scholar 

  • Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO2calc: a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone): U.S. Geological survey open-file report 2010–1280

  • Roleda MY, Wiencke C, Hanelt D (2006) Thallus morphology and optical characteristics affect growth and DNA damage by UV radiation in juvenile Arctic Laminaria sporophytes. Planta 223:407–417

    Article  CAS  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Sharkey TD, Berry JA (1985) Carbon isotope fractionation of algae influenced by an inducible CO2-concentrating mechanism. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists, Rockville, pp 389–401

    Google Scholar 

  • Sherlock DJ, Raven JA (2001) Interactions between carbon dioxide and oxygen in the photosynthesis of marine red macroalgae. Bot J Scot 53:33–43

    Article  Google Scholar 

  • Staehr PA, Wernberg T (2009) Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. J Phycol 45:91–99

    Article  CAS  Google Scholar 

  • Steinacher M, Joos F, Frölicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533

    Article  CAS  Google Scholar 

  • Suárez-Álvarez S, Gómez-Pinchetti JL, García-Reina G (2012) Effects of increased CO2 levels on growth, photosynthesis, ammonium uptake and cell composition in the macroalga Hypnea spinella (Gigartinales, Rhodophyta). J Appl Phycol 24:815–823

    Article  Google Scholar 

  • Surif MB, Raven JA (1989) Exogenous inorganic carbon-sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta)—ecological and taxonomic implications. Oecologia 78:97–105

    Article  Google Scholar 

  • Surif MB, Raven JA (1990) Photosynthetic gas exchange under emersed conditions in eulittoral and normally sumersed members of the Fucales and Laminariales (Phaeophyta): interpretation in relation to C isotope ratio and water use efficiency. Oecologia 82:68–80

    Article  Google Scholar 

  • Tatters AO, Roleda MY, Schnetzer A, Fu F, Hurd CL, Boyd PW, Caron DA, Lie AAY, Hoffmann LJ, Hutchins DA (2013) Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Philos Trans R Soc B 368:20120437

    Article  Google Scholar 

  • Tom Dieck I (1992) North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia 31:147–163

    Article  Google Scholar 

  • Torstensson A, Chierici M, Wulff A (2012) The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula directa. Polar Biol 35:205–214

    Article  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215

    Article  CAS  Google Scholar 

  • Weslawski JM, Kendall MA, Wlodarska-Kowalczuk M, Iken K, Kedra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and predictions. Mar Biodiv 41:71–85

    Article  Google Scholar 

  • Wessels H, Hagen W, Wiencke C, Karsten U (2004) Trophic interactions between macroalgae and herbivores from Kongsfjorden (Svalbard). Ber Polarforsch Meeresforsch 492:63–72

    Google Scholar 

  • Wiencke C, Fischer G (1990) Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Mar Ecol Prog Ser 65:283–292

    Article  Google Scholar 

  • Wu Y, Gao K, Riebesell U (2010) CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7:2915–2923

    Article  CAS  Google Scholar 

  • Yang G, Gao K (2012) Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity. Mar Environ Res 79:142–151

    Article  Google Scholar 

  • Young JN, Kranz SA, Goldman JAL, Tortell PD, Morel FM (2015a) Antarctic phytoplankton down-regulate their carbon concentrating mechanisms under high CO2 with no change in growth rates. Mar Ecol Prog Ser 532:13–28

    Article  CAS  Google Scholar 

  • Young JN, Goldman JAL, Kranz SA, Tortell PD, Morel FMM (2015b) Slow carboxylation of Rubisco constrains the maximum rate of carbon fixation during Antarctic phytoplankton blooms. New Phytol 205:172–181

    Article  CAS  Google Scholar 

  • Zou D, Gao K (2009) Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia 48:510–517

    Article  CAS  Google Scholar 

  • Zou D, Gao K, Luo H (2011) Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. J Phycol 47:87–97

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed at the International Arctic Environmental Research and Monitoring Facility at Ny-Ålesund, Spitsbergen, Norway. We thank the AWI diving team for collecting algal samples and Elisabeth Helmke (AWI) for assistance with 14C counting.

Funding

This study was financed by the project CGL2015-67014-R from the Spanish Ministry for Economy and Competitiveness. Concepcion Iñiguez and M. Rosario Lorenzo were supported by a FPU Grant from the Spanish Ministry for Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concepción Iñiguez.

Ethics declarations

Conflict of interest

The authors claim no conflict of interest to their knowledge.

Human and animal rights

This article does not contain any studies with animals performed by any of the authors. All authors read and approved the manuscript.

Additional information

Responsible Editor: K. Bischof.

Reviewed by Undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iñiguez, C., Carmona, R., Lorenzo, M.R. et al. Increased temperature, rather than elevated CO2, modulates the carbon assimilation of the Arctic kelps Saccharina latissima and Laminaria solidungula . Mar Biol 163, 248 (2016). https://doi.org/10.1007/s00227-016-3024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-3024-6

Keywords

Navigation