Skip to main content
Log in

Lipids and fatty acids of cold-water soft corals and hydrocorals: a comparison with tropical species and implications for coral nutrition

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Fatty acid (FA) markers are widely used for tracking trophic relationships in cold-water benthic ecosystems, but data on the lipid composition of soft corals and hydrocorals, which are important components of these ecosystems, are very limited. Lipid class and FA profiles of four soft coral families (eleven species) and one hydrocoral family (four species) from the northeastern part of the Sea of Okhotsk were studied for the first time and compared with their tropical counterparts. Among cold-water cnidarians, soft corals contained much more monoalkyldiacylglycerols but less triacylglycerols than hydrocorals. The lipid class profile of all azooxanthellate soft corals did not differ, whereas FA profiles of these corals from cold-water and tropical regions differed. The key FAs were arachidonic (20:4n-6) and eicosapentaenoic (20:5n-3) acids, followed by 24:5n-6 and 24:6n-3. Within the cold-water corals, a sharp difference in polyunsaturated FA (PUFA) profiles between Primnoidae species and other families (Nephtheidae, Paragorgiidae, and Acanthogorgiidae) was found. The high level of n-3 PUFAs (20:5n-3 and 24:6n-3) in Primnoidae and the high level of n-6 PUFAs (20:4n-6 and 24:5n-6) in other cold-water coral families indicated the substantial difference in a feeding behavior between these corals inhabiting the same biotope. Based on the FA markers, a dietary predomination of herbivorous zooplankton is assumed for Primnoidae. An opportunistic feeding on various food sources is supposed for other cold-water coral families studied. The lipid and FA profiles were found to be characteristic for tropical zooxanthellate reef-building and soft corals, azooxanthellate soft corals from tropical and cold-water regions, and Primnoidae among cold-water coral families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson BA (1978) Mass spectrometry of fatty acid pyrrolidides. Prog Chem Fats Other Lipids 16:279–308

    Article  CAS  Google Scholar 

  • Anthony KRN (1999) Coral suspension feeding on fine particulate matter. J Exp Mar Biol Ecol 232:85–106

    Article  Google Scholar 

  • Anthony KRN (2000) Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs 19:59–67

    Article  Google Scholar 

  • Auel H, Harjes M, Da Rocha R, Stübing D, Hagen W (2002) Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biol 25:374–383

    Google Scholar 

  • Bishop DG, Kenrick JR (1980) Fatty acid composition of symbiotic zooxanthellae in relation to their hosts. Lipids 15:799–804

    Article  CAS  Google Scholar 

  • Cairns SD, Bayer FM (2009) A generic revision and phylogenetic analysis of the Primnoidae (Cnidaria: Octocorallia). SMC Zool 629:1–79

    Google Scholar 

  • Carreau JP, Dubacq JP (1978) Adaptation of macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts. J Chromatogr 151:384–390

    Article  CAS  Google Scholar 

  • Chen W-NU, Kang H-J, Weis VM, Mayfield AB, Jiang P-L, Fang L-S, Chen C-S (2012) Diel rhythmicity of lipid-body formation in a coral-Symbiodinium endosymbiosis. Coral Reefs 31:521–534

    Article  Google Scholar 

  • Christie WW (1988) Equivalent chain-lengths of methyl ester derivatives of fatty acids on gas chromatography—a reappraisal. J Chromatogr 447:305–314

    Article  CAS  Google Scholar 

  • Dalsgaard J, St John MS, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    Article  Google Scholar 

  • Davies AJ, Duineveld GCA, Lavaleye MSS, Bergman MJN, van Haren H, Roberts MJ (2009) Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnol Oceanogr 54:620–629

    Article  Google Scholar 

  • Dodds LA, Black KD, Orr H, Roberts JM (2009) Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Mar Ecol Prog Ser 397:113–124

    Article  CAS  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Berghuis EM (2004) Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Mar Ecol Prog Ser 277:13–23

    Article  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Bergman MJN, De Stigter H, Mienis F (2007) Trophic structure of a cold-water coral mound community (Rockall Bank, NE Atlantic) in relation to the near-bottom particle supply and current regime. Bull Mar Sci 81:449–467

    Google Scholar 

  • Duineveld GCA, Jeffreys RM, Lavaleye MSS, Davies AJ, Bergman MJN, Watmough T, Witbaard R (2012) Spatial and tidal variation in food supply to shallow cold-water coral reefs of the Mingulay Reef complex (Outer Hebrides, Scotland). Mar Ecol Prog Ser 444:97–115

    Article  Google Scholar 

  • Fabricius KE, Dommisse M (2000) Depletion of suspended particulate matter over coastal reef communities dominated by zooxanthellate soft corals. Mar Ecol Prog Ser 196:157–167

    Article  CAS  Google Scholar 

  • Fabricius KE, Benayahu Y, Genin A (1995) Herbivory in asymbiotic soft corals. Science 268:90–92

    Article  CAS  Google Scholar 

  • Falk-Petersen S, Hagen W, Kattner G, Clarke A, Sargent J (2000) Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can J Fish Aquat Sci 57(Suppl. 3):178–191

    Article  CAS  Google Scholar 

  • Hamoutene D, Puestow T, Miller-Banoub J, Wareham V (2008) Main lipid classes in some species of deep-sea corals in the Newfoundland and Labrador region (Northwest Atlantic Ocean). Coral Reefs 27:237–246

    Article  Google Scholar 

  • Harland AD, Navarro JC, Spencer Davies P, Fixter LM (1993) Lipids of some Caribbean and Red Sea corals: total lipid, was esters, triglycerides and fatty acids. Mar Biol 117:113–117

    Article  CAS  Google Scholar 

  • Imbs AB (2013) Fatty acids and other lipids of corals: composition, distribution, and biosynthesis. Russ J Mar Biol 39:153–168

    Article  CAS  Google Scholar 

  • Imbs AB (2016) High level of tetracosapolyenoic fatty acids in the cold-water mollusk Tochuina tetraquetra is a result of the nudibranch feeding on soft corals. Polar Biol. doi:10.1007/s00300-015-1865-y

    Google Scholar 

  • Imbs AB, Latyshev NA (2012) Fatty acid composition as an indicator of possible sources of nutrition for soft corals of the genus Sinularia (Alcyoniidae). J Mar Biol Ass UK 92:1341–1347

    Article  CAS  Google Scholar 

  • Imbs AB, Yakovleva IM (2012) Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach. Coral Reefs 31:41–53

    Article  Google Scholar 

  • Imbs AB, Demina OA, Demidkova DA (2006) Lipid class and fatty acid composition of the boreal soft coral Gersemia rubiformis. Lipids 41:721–725

    Article  CAS  Google Scholar 

  • Imbs AB, Luu HV, Pham LQ (2007) Intra- and interspecific variability of fatty acid composition of soft corals. Russ J Mar Biol 33:67–70

    Article  CAS  Google Scholar 

  • Imbs AB, Demidkova DA, Dautova TN, Latyshev NA (2009) Fatty acid biomarkers of symbionts and unusual inhibition of tetracosapolyenoic acid biosynthesis in corals (Octocorallia). Lipids 44:325–335

    Article  CAS  Google Scholar 

  • Imbs AB, Latyshev NA, Dautova TN, Latypov YY (2010) Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae. Mar Ecol Prog Ser 409:65–75

    Article  CAS  Google Scholar 

  • Imbs AB, Yakovleva IM, Dautova TN, Bui LH, Jones P (2014) Diversity of fatty acid composition of symbiotic dinoflagellates in corals: evidence for the transfer of host PUFAs to the symbionts. Phytochemistry 101:76–82

    Article  CAS  Google Scholar 

  • Iverson SJ (2008) Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In: Arts MT, Brett MT, Kainz M (eds) Lipids in aquatic ecosystems. Springer, New York, pp 281–307

    Google Scholar 

  • Joseph JD (1979) Lipid composition of marine and estuarine invertebrates: porifera and Cnidaria. Prog Lipid Res 18:1–30

    Article  CAS  Google Scholar 

  • Kattner G, Hagen W (1995) Polar herbivorous copepods—different pathways in lipid biosynthesis. ICES J Mar Sci 52:329–335

    Article  Google Scholar 

  • Kelly JR, Scheibling RE (2012) Fatty acids as dietary tracers in benthic food webs. Mar Ecol Prog Ser 446:1–22

    Article  CAS  Google Scholar 

  • Kharlamenko VI, Brandt A, Kiyashko SI, Würzberg L (2013) Trophic relationship of benthic invertebrate fauna from the continental slope of the Sea of Japan. Deep-Sea Res Pt II 86–87:34–42

    Article  Google Scholar 

  • Kiriakoulakis K, Fisher L, Freiwald A, Grehan A, Roberts JM, Wolff GA (2005) Lipids and nitrogen isotopes of two deepwater corals from the North-East Atlantic: initial results and implications for their trophic regime. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 715–729

    Chapter  Google Scholar 

  • Latyshev NA, Naumenko NV, Svetashev VI, Latypov YY (1991) Fatty acids of reef building corals. Mar Ecol Prog Ser 76:295–301

    Article  CAS  Google Scholar 

  • Legeżyńska J J, Kędra M, Walkusz W (2014) Identifying trophic relationships within the high Arctic benthic community: how much can fatty acids tell? Mar Biol 161:821–836

    Article  Google Scholar 

  • Mancini I, Guerriero A, Guella G, Bakken T, Zibrowius H, Pietra F (1999) Novel 10-hydroxydocosapolyenoic acids from deep-water scleractinian corals. Helv Chim Acta 82:677–684

    Article  CAS  Google Scholar 

  • Mansour MP, Volkman JK, Jackson AE, Blackburn SI (1999) The fatty acid and sterol composition of five marine dinoflagellates. J Phycol 35:710–720

    Article  CAS  Google Scholar 

  • Monroig Ó, Tocher DR, Navarro JC (2013) Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms. Mar Drugs 11:3998–4018

    Article  Google Scholar 

  • Mueller CE, Larsson AI, Veuger B, Middelburg JJ, van Oevelen D (2014) Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa. Biogeosciences 11:123–133

    Article  Google Scholar 

  • Oku H, Yamashiro H, Onaga K, Sakai K, Iwasaki H (2003) Seasonal changes in the content and composition of lipids in the coral Goniastrea aspera. Coral Reefs 22:83–85

    Google Scholar 

  • Parrish CC, Thompson RJ, Deibel D (2005) Lipid classes and fatty acids in plankton and settling matter during the spring bloom in a cold ocean coastal environment. Mar Ecol Prog Ser 286:57–68

    Article  CAS  Google Scholar 

  • Patton JS, Battey JF, Rigler MW, Porter JW, Black CC, Burris JE (1983) A comparison of the metabolism of bicarbonate 14C and acetate 1-14C and the variability of species lipid compositions in reef corals. Mar Biol 75:121–130

    Article  CAS  Google Scholar 

  • Reuss N, Poulsen LK (2002) Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Greenland. Mar Biol 141:423–434

    Article  CAS  Google Scholar 

  • Rodrigues LJ, Grottoli AG, Pease TK (2008) Lipid class composition of bleached and recovering Porites compressa Dana, 1846 and Montipora capitata Dana, 1846 corals from Hawaii. J Exp Mar Biol Ecol 358:136–143

    Article  CAS  Google Scholar 

  • Sargent JR, Henderson RJ (1986) Lipids. In: Corner EDS, O’Hara SCM (eds) The biological chemistry of marine copepods. Clarendon Press, Oxford, pp 59–108

    Google Scholar 

  • Sargent JR, Parkes RJ, Mueller-Harvey I, Henderson RJ (1987) Lipid biomarkers in marine ecology. In: Sleigh MA (ed) Microbes in the sea. Ellis Horwood, Chicester, pp 119–138

    Google Scholar 

  • Saunders SM, Radford B, Bourke SA, Thiele Z, Bech T, Mardon J (2005) A rapid method for determining lipid fraction ratios of hard corals under varying sediment and light regimes. Environ Chem 2:331–336

    Article  CAS  Google Scholar 

  • Seemann J, Sawall Y, Auel H, Richter C (2013) The use of lipids and fatty acids to measure the trophic plasticity of the coral Stylophora subseriata. Lipids 48:275–286

    Article  CAS  Google Scholar 

  • Sherwood OA, Jamieson RE, Edinger EN, Wareham VE (2008) Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: examination of trophic, depth and spatial effects. Deep-Sea Res Part I 55:1392–1402

    Article  CAS  Google Scholar 

  • Slattery M, McClintock JB, Bowser SS (1997) Deposit feeding: a novel mode of nutrition in the Antarctic colonial soft coral Gersemia antarctica. Mar Ecol Prog Ser 149:299–304

    Article  Google Scholar 

  • Sorokin YI (1993) Coral reef ecology. Springer, Heidelberg

    Book  Google Scholar 

  • Spiro B, Roberts M, Gage J, Chenery S (2000) 18O/16O and 13C/12C in an ahermatypic deepwater coral Lophelia pertusa from the North Atlantic, a case of disequilibrium isotope fractionation. Rapid Commun Mass Sp 14:1332–1336

    Article  CAS  Google Scholar 

  • Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 1486:219–231

    Article  CAS  Google Scholar 

  • Stimson JS (1987) Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals. Bull Mar Sci 41:889–904

    Google Scholar 

  • Suhr SB, Pond DW, Gooday AJ, Smith CR (2003) Selective feeding by benthic foraminifera on phytodetritus on the western Antarctic Peninsula shelf: evidence from fatty acid biomarker analysis. Mar Ecol Prog Ser 262:153–162

    Article  Google Scholar 

  • Svetashev VI, Vysotskii MV (1998) Fatty acids of Heliopora coerulea and chemotaxonomic significance of tetracosapolyenoic acids in coelenterates. Comp Biochem Physiol 119B:73–75

    Article  CAS  Google Scholar 

  • Teece MA, Estes B, Gelsleichter E, Lirman D (2011) Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnol Oceanogr 56:1285–1296

    Article  CAS  Google Scholar 

  • Treignier C, Grover R, Ferrier-Pages C, Tolosa I (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Oceanogr 53:2702–2710

    Article  CAS  Google Scholar 

  • Treignier C, Tolosa I, Grover R, Reynaud S, Ferrier-Pagés C (2009) Carbon isotope composition of fatty acids and sterols in the scleractinian coral Turbinaria reniformis: effect of light and feeding. Limnol Oceanog 54:1933–1940

    Article  CAS  Google Scholar 

  • Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080

    Article  CAS  Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acids and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    Article  CAS  Google Scholar 

  • Vysotskii MV, Svetashev VI (1991) Identification, isolation and characterization of tetracosapolyenoic acids in lipids of marine coelenterates. Biochim Biophys Acta 1083:161–165

    Article  CAS  Google Scholar 

  • Yamashiro H, Oku H, Higa H, Chinen I, Sakai K (1999) Composition of lipids, fatty acids and sterols in Okinawan corals. Comp Biochem Physiol 122B:397–407

    Article  CAS  Google Scholar 

  • Yamashiro H, Oku H, Onaga K (2005) Effect of bleaching on lipid content and composition of Okinawan corals. Fish Sci 71:448–453

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New York

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. N.I. Selin for the collection of specimens. We thank Dr. V.I. Kharlamenko for the help in PRIMER 6 statistical analyses and reviewing drafts of this paper. This work was supported by grants 09-04-98542 and 15-04-02686 from the Russian Foundation for Basic Research and grant VANT16-003 from the Russian Academy of Sciences.

Funding

This study was funded by grants 09-04-98542 and 15-04-02686 from the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey B. Imbs.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or vertebrate animals performed by any of the authors. All the experiments on invertebrate animals (Cnidarians) were reviewed and approved by the Ethics Committee of A.V. Zhirmunsky Institute of Marine Biology of the Far-Eastern Branch of the Russian Academy of Sciences.

Additional information

Responsible Editor: L. D. Mydlarz.

Reviewed by L. Santiago-Vazquez and L. D. Mydlarz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbs, A.B., Demidkova, D.A. & Dautova, T.N. Lipids and fatty acids of cold-water soft corals and hydrocorals: a comparison with tropical species and implications for coral nutrition. Mar Biol 163, 202 (2016). https://doi.org/10.1007/s00227-016-2974-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2974-z

Keywords

Navigation