Skip to main content
Log in

Glycolytic regulation in aestivation of the sea cucumber Apostichopus japonicus: evidence from metabolite quantification and rate-limiting enzyme analyses

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

An Erratum to this article was published on 22 February 2017

Abstract

Aestivation is a state of dormancy in diverse animal species characterized by a depressed metabolism. High temperatures in the summer trigger aestivation in the adult sea cucumber, Apostichopus japonicus. In the present study, the glycolytic suppression in aestivating A. japonicus was verified by metabolite quantification and activity and a gene expression analysis of rate-limiting enzymes (hexokinase and pyruvate kinase). Significant decreases in glucose concentrations were discovered in the respiration tree (p < 0.01), intestine (p < 0.05) and muscle (p < 0.01) of aestivating A. japonicus; likewise, over this period, pyruvic acid concentrations significantly decreased in the respiration tree (p < 0.05) and intestine (p < 0.01), but were unchanged in muscle. Enzymatic activity variation of hexokinase (Aj-HK) and pyruvate kinase (Aj-PK) in aestivating A. japonicus revealed that Aj-HK remained at high levels in the respiration tree and muscle but significantly decreased in intestine (p < 0.01); the activity of Aj-PK also declined significantly in intestine (p < 0.01), whereas it increased significantly in the respiration tree (p < 0.05) and muscle (p < 0.01). The gene sequences of Aj-HK and Aj-PK were identified, and their transcriptional quantification revealed that the expression of Aj-HK was depressed in all of the examined tissues, whereas Aj-PK expression was depressed in muscle only. These results suggest that glycolytic suppression occurred in aestivating A. japonicus, especially in the intestine, and transcriptional and post-transcriptional modifications are involved in the regulation of glycolytic suppression in this marine species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe AS (1994) Estivation in South American amphibians and reptiles. Braz J Med Biol Res 28:1241–1247

    Google Scholar 

  • Adroher FJ, Osuna A, Lupiáñez JA (1990) Differential energetic metabolism during Trypanosoma cruzi differentiation. II. Hexokinase, phosphofructokinase and pyruvate kinase. Mol Cell Biochem 94:71–82

    Article  CAS  Google Scholar 

  • Bell RA, Dawson NJ, Storey KB (2012) Insights into the in vivo regulation of glutamate dehydrogenase from the foot muscle of an estivating land snail. Enzymol Res. doi:10.1155/2012/317314

    Google Scholar 

  • Brooks S, Storey KB (1990) Glycolytic enzyme binding and metabolic control in estivation and anoxia in the land snail Otala lactea. J Exp Biol 151:193–204

    CAS  Google Scholar 

  • Brooks S, Storey KB (1997) Glycolytic controls in estivation and anoxia: a comparison of metabolic arrest in land and marine molluscs. Comp Biochem Physiol A Physiol 118:1103–1114. doi:10.1016/s0300-9629(97)00237-5

    Article  CAS  Google Scholar 

  • Canback B, Andersson S, Kurland C (2002) The global phylogeny of glycolytic enzymes. Proc Natl Acad 99:6097–6102. doi:10.1073/pnas.082112499

    Article  CAS  Google Scholar 

  • Chen MY, Zhu AJ, Storey KB (2015) Comparative phosphoproteomic analysis of intestinal phosphorylated proteins in active versus aestivating sea cucumbers. J Proteom. doi:10.1016/j.jprot.2015.09.016

    Google Scholar 

  • Christian K, Green B, Kennett R (1996) Some physiological consequences of estivation by freshwater crocodiles, Crocodylus johnstoni. J Herpetol. doi:10.2307/1564699

    Google Scholar 

  • Connett RJ, Sahlin K (1996) Control of glycolysis and glycogen metabolism. Compr Physiol. doi:10.1002/cphy.cp120119

    Google Scholar 

  • Du HX, Bao ZM, Hou R, Wang S, Su HL, Yan JJ, Tian ML, Li Y, Wei W, Lu W, Hu XL, Wang S, Hu JJ (2012) Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867). Plos One. doi:10.1371/journal.pone.0033311

    Google Scholar 

  • Flanigan J, Withers PC, Storey KB, Guppy M (1990) Changes in enzyme binding and activity during aestivation in the frog Neobatrachus pelobatoides. Comp Biochem Physiol B Biochem Mol Biol 96:67–71. doi:10.1016/0305-0491(90)90343-R

    Article  CAS  Google Scholar 

  • Greenway SC, Storey KB (1999) The effect of prolonged anoxia on enzyme activities in oysters (Crassostrea virginica) at different seasons. J Exp Mar Biol Ecol 242:259–272

    Article  CAS  Google Scholar 

  • Kayes SM, Cramp RL, Franklin CE (2009) Metabolic depression during aestivation in Cyclorana alboguttata. Comp Biochem Phys A 154:557–563. doi:10.1016/j.cbpa.2009.09.001

    Article  Google Scholar 

  • Li FX, Liu YH, Song BX, Sun HL, Gu BX, Zhang XL (1996) Study on aestivating habit of sea cucumber Apostichopus japonicus Selenka: the factors relating to aestivation. J Fish Sci China 3:49–57

    Google Scholar 

  • Liao Y (1997) Phylum Echinodermata: class Holothuroidea. Science Press, Beijing

    Google Scholar 

  • Ligon DB, Peterson CC (2002) Physiological and behavioral variation in estivation among mud turtles (Kinosternon spp.). Physiol Biochen Zool 75:283–293. doi:10.1086/342000

    Article  Google Scholar 

  • Liu YH, Li FX, Song BX, Sun HL, Zhang XL, Gu BX (1996) Study on aestivating habit of sea cucumber Apostichopus japonicus Selenka: ecological characteristics of aestivation. J Fish Sci China 3:41–48

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Loong AM, Hiong KC, Wong WP, Chew SF, Ip YK (2012) Differential gene expression in the liver of the African lungfish, Protopterus annectens, after 6 days of estivation in air. J Comp Physiol B 182:231–245. doi:10.1007/s00360-011-0613-z

    Article  CAS  Google Scholar 

  • Luhring TM, Holdo RM (2015) Trade-offs between growth and maturation: the cost of reproduction for surviving environmental extremes. Oecologia 178:723–732. doi:10.1007/s00442-015-3270-1

    Article  Google Scholar 

  • Meng XL, Dong YW, Dong SL (2015) Large-scale mortality and limited expression of heat shock proteins of aestivating sea cucumbers Apostichopus japonicus after acute salinity decrease. Aquac Res 46:1573–1581. doi:10.1111/are.12311

    Article  CAS  Google Scholar 

  • Michaelidis B, Vavoulidou D, Rousou J, Pörtner HO (2007) The potential role of CO2 in initiation and maintenance of estivation in the land snail Helix lucorum. Physiol Biochem Zool 80:113–124. doi:10.1086/509210

    Article  CAS  Google Scholar 

  • Michaelidis B, Kyriakopoulou-Sklavounou P, Staikou A, Papathanasiou I, Konstantinou K (2008) Glycolytic adjustments in tissues of frog Rana ridibunda and land snail Helix lucorum during seasonal hibernation. Comp Biochem Physiol A Mol Integr Physiol 151:582–589. doi:10.1016/j.cbpa.2008.07.017

    Article  Google Scholar 

  • Pinder AW, Storey KB, Ultsch GR (1992) Estivation and hibernation. In: Feder ME, Burggren WW (eds) Environmental Biology of the Amphibia, University of Chicago Press, Chicago, pp 250–274

    Google Scholar 

  • Salway KD, Tattersall GJ, Stuart JA (2010) Rapid upregulation of heart antioxidant enzymes during arousal from estivation in the Giant African snail (Achatina fulica). Comp Biochem Phys A 157:229–236. doi:10.1016/j.cbpa.2010.06.188

    Article  Google Scholar 

  • Shalan AG, Bradshaw SD, Withers PC, Thompson G, Bayomy MFF, Bradshaw FJ, Stewart T (2004) Spermatogenesis and plasma testosterone levels in Western Australian burrowing desert frogs, Cyclorana platycephala, Cyclorana maini, and Neobatrachus sutor, during aestivation. Gen Comp Endocr 136:90–100. doi:10.1016/j.ygcen.2003.12.005

    Article  CAS  Google Scholar 

  • Shao Y, Li CH, Chen XC, Zhang PJ, Li Y, Li TW, Jiang JB (2015) Metabolomic responses of sea cucumber Apostichopus japonicus to thermal stresses. Aquaculture 435:390–397. doi:10.1016/j.aquaculture.2014.10.023

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85. doi:10.1016/0003-2697(85)90442-7

    Article  CAS  Google Scholar 

  • Staples JF (2016) Metabolic flexibility: hibernation, torpor, and estivation. Compr Physiol 6:737. doi:10.1002/cphy.c140064

    Article  Google Scholar 

  • Storey KB (2002) Life in the slow lane: molecular mechanisms of estivation. Comp Biochem Phys A 133:733–754. doi:10.1016/S1095-6433(02)00206-4

    Article  Google Scholar 

  • Storey KB, Storey JM (1990) Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q Rev Biol 65(2):145–174

    Article  CAS  Google Scholar 

  • Storey KB, Storey JM (2004) Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev 79:207–233. doi:10.1017/S1464793103006195

    Article  Google Scholar 

  • Storey KB, Storey JM (2010) Metabolic regulation and gene expression during aestivation. Prog Mol Subcell Biol 49:25–45

    Article  CAS  Google Scholar 

  • Storey KB, Storey JM (2012) Aestivation: signaling and hypometabolism. J Exp Biol 215:1425–1433. doi:10.1242/jeb.054403

    Article  CAS  Google Scholar 

  • Stuart JA, Gillis TE, Ballantyne JS (1998a) Remodeling of phospholipid fatty acids in mitochondrial membranes of estivating snails. Lipids 33:787–793. doi:10.1007/s11745-998-0271-1

    Article  CAS  Google Scholar 

  • Stuart JA, Gillis TE, Ballantyne JS (1998b) Compositional correlates of metabolic depression in the mitochondrial membranes of estivating snails. Am J Physiol Regul Integr Comp Physiol 275:R1977–R1982

    CAS  Google Scholar 

  • Wang TM, Yang HS, Zhao H, Chen MY, Wang B (2011) Transcriptional changes in epigenetic modifiers associated with gene silencing in the intestine of the sea cucumber, Apostichopus japonicus (Selenka), during aestivation. Chin J Oceanol Limnol 29:1267–1274. doi:10.1007/s00343-011-0143-2

    Article  CAS  Google Scholar 

  • Whitwam RE, Storey KB (1990) Pyruvate kinase from the land snail Otala lactea: regulation by reversible phosphorylation during estivation and anoxia. J Exp Biol 154:321–337

    CAS  Google Scholar 

  • Xu DX, Sun LN, Liu SL, Zhang LB, Yang HS (2016) Molecular cloning of hsf1 and hsbp1 cDNAs, and the expression of hsf1, hsbp1 and hsp70 under heat stress in the sea cucumber Apostichopus japonicus. Comp Biochem Phys B 198:1–9. doi:10.1016/j.cbpb.2016.03.001

    Article  CAS  Google Scholar 

  • Yang HS, Yuan XT, Zhou Y, Mao YZ, Zhang T, Liu Y (2005) Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquac Res 36:1085–1092. doi:10.1111/j.1365-2109.2005.01325.x

    Article  Google Scholar 

  • Yang HS, Zhou Y, Zhang T, Yuan XT, Li XX, Liu Y, Zhang FS (2006) Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. J Exp Mar Biol Ecol 330:505–510. doi:10.1016/j.jembe.2005.09.010

    Article  CAS  Google Scholar 

  • Yuan XT, Yang HS, Wang LL, Zhou Y, Zhang T, Liu Y (2007) Effects of aestivation on energy budget of sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Acta Ecologica Sinica 27:3155–3161. doi:10.1016/S1872-2032(07)60070-5

    Article  Google Scholar 

  • Zhang P, Lu YL, Li CH, Su XR, Wang ZH, Jin CH, Li Y, Li TW (2013) Identification of differential expressed proteins and characterization their mRNA expression in thermally stressed Apostichopus japonicus. Comp Biochem Phys D. doi:10.1016/j.cbd.2013.05.001

    Google Scholar 

  • Zhang LB, Pan Y, Song H (2015) Environmental drivers of behavior. Dev Aquac Fish Sci 39:133–152. doi:10.1016/B978-0-12-799953-1.00009-X

    Article  Google Scholar 

  • Zhao Y, Chen MY, Su L, Wang TM, Liu SL, Yang HS (2013) Molecular cloning and expression-profile analysis of sea cucumber DNA (Cytosine-5)-methyltransferase 1 and methyl-CpG binding domain type 2/3 genes during aestivation. Comp Biochem Physiol B Biochem Mol Biol 165:26–35. doi:10.1016/j.cbpb.2013.02.009

    Article  CAS  Google Scholar 

  • Zhao Y, Chen MY, Storey KB, Sun LN, Yang HS (2014a) DNA methylation levels analysis in four tissues of sea cucumber Apostichopus japonicus based on fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) during aestivation. Comp Biochem Physiol B Biochem Mol Biol 181:26–32. doi:10.1016/j.cbpb.2014.11.001

    Article  Google Scholar 

  • Zhao Y, Yang HS, Storey KB, Chen MY (2014b) Differential gene expression in the respiratory tree of the sea cucumber Apostichopus japonicus during aestivation. Mar Genom 18 Pt B:173–183. doi:10.1016/j.margen.2014.07.001

    Article  Google Scholar 

  • Zhao Y, Yang HS, Storey KB, Chen MY (2014c) RNA-seq dependent transcriptional analysis unveils gene expression profile in the intestine of sea cucumber Apostichopus japonicus during aestivation. Comp Biochem Physiol Part D Genom Proteom 10:30–43. doi:10.1016/j.cbd.2014.02.002

    CAS  Google Scholar 

Download references

Acknowledgments

The authors of this paper would like to thank Prof. Jiayan Xie for their technical assistance and equipment usage. This work was financially supported by Natural Science Foundation of Zhejiang Province (LY14D060002), National Natural Science Foundation of China (41406137) and the Research Project of Zhejiang Ocean University (Q1405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianming Wang.

Additional information

Responsible Editor: S. Uthicke.

Reviewed by undisclosed experts.

An erratum to this article is available at http://dx.doi.org/10.1007/s00227-017-3077-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, X., Chen, M., Wu, C. et al. Glycolytic regulation in aestivation of the sea cucumber Apostichopus japonicus: evidence from metabolite quantification and rate-limiting enzyme analyses. Mar Biol 163, 167 (2016). https://doi.org/10.1007/s00227-016-2936-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2936-5

Keywords

Navigation