Skip to main content

Advertisement

Log in

Climate change and polar range expansions: Could cuttlefish cross the Arctic?

  • Invasive Species - Short Note
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Climate change can have major effects on the distribution of species. In marine ecosystems, the cold waters of the Arctic have restricted warmer water species from crossing between Eurasia and North America. However, with Arctic waters becoming warmer, various marine species have expanded their distribution. Cuttlefish are fast-growing, voracious predators and are absent in American waters. The European cuttlefish Sepia officinalis is the most northerly distributed cuttlefish, with potential to expand its range and cross to the American continent, potentially causing changes in shelf food webs. Climate model predictions suggest that the S. officinalis could potentially reach American shores, by 2300 via the north Atlantic with medium mitigation of greenhouse gas concentrations; we predict that adult dispersal of cuttlefish across the Atlantic sector would require a migration distance of over 1400 km at depths below 200 m and temperatures above 7 °C (temperature below which cuttlefish can not maintain routine metabolic processes physiologically). For temperatures above 9.5 °C (temperature above which cuttlefish can grow), 2500 km would be required, and such conditions will possibly exist by the year 2300. If they reach American shores they could have large impacts on coastal marine ecosystems, due to their wide diet (e.g. diet covers many shallow-water crustacean and fish species) and its potential as prey, and due to their short life-history strategy of “live fast, die young”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Arkley K, Jacklin MS, Boulter M, Tower J (1996) The cuttlefish (Sepia officinalis): a guide to its exploitation in UK waters, Seafish Report N. SR467. Sea-fish Industry Authority, Hull, UK

  • Beaugrand G, Reid PC, Ibañez F, Lindley JA, Edwards M (2002) Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692

    Article  CAS  Google Scholar 

  • Blanc A, Daguzan J (1998) Artificial surfaces for cuttlefish eggs (Sepia officinalis L.) in Morbihan Bay, France. Fish Res 38:225–231

    Article  Google Scholar 

  • Boletzky SV (1983) Sepia officinalis. In: Boyle PR (ed) Cephalopod life cycles. Academic Press, London, pp 31–52

    Google Scholar 

  • Bouchaud O (1991) Energy consumption of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) during embryonic development, preliminary results. Bull Mar Sci 49:333–340

    Google Scholar 

  • Boyle P, Rodhouse PG (2005) Cephalopods ecology and fisheries. Blackwell Science, Oxford

    Google Scholar 

  • Caesar J, Palin E, Liddicoat S, Lowe J, Burke E, Pardaens A, Sanderson M, Kahana R (2013) Response of the HadGEM2 earth system model to future greenhouse gas emissions pathways to the year 2300. J Clim 26:3275–3284

    Article  Google Scholar 

  • Dorey N, Melzner F, Martin S, Oberhänsli F, Teyssié JL, Bustamante P, Gattuso JP, Lacoue-Labarthe T (2013) Ocean acidification and temperature rise: effects on calcification during early development of the cuttlefish Sepia officinalis. Mar Biol 160:2007–2022

    Article  CAS  Google Scholar 

  • Doyle P (1991) Teuthid cephalopods from the upper Jurassic of Antarctica. Palaentology 34:169–178

    Google Scholar 

  • Forsythe J, Lee P, Walsh L, Clark T (2002) The effects of crowding on growth of the European cuttlefish, Sepia officinalis Linnaeus, 1758 reared at two temperatures. J Exp Mar Biol Ecol 269:173–185

    Article  Google Scholar 

  • Gido KB, Brown JH (1999) Invasion of North American drainages by alien fish species. Freshw Biol 42:387–399

    Article  Google Scholar 

  • Golikov AV, Sabirov RM, Lubin PA, Jørgensen LL (2013) Changes in distribution and range structure of Arctic cephalopods due to climatic changes of the last decades. Biodiversity 14:24–35

    Article  Google Scholar 

  • Golikov AV, Sabirov RM, Lubin PA, Jørgensen LL, Beck I-M (2014) The northernmost record of Sepietta oweniana (Cephalopoda: Sepiolidae) and comments on boreo-subtropical cephalopod species occurrence in the Arctic. Mar Biodivers Rec 7:e58

    Article  Google Scholar 

  • Khromov DN (1998) Distribution patterns of Sepiidae. In: Voss NA, Vecchione M, Toll RB, Sweeney MJ (eds) Systematics and biogeography of cephalopods. Smithson Contr Zool, pp 191–206

  • Kjellman FR (1883) The algae of the Arctic Sea: a survey of the species, together with an exposition of the general characters and the development of flora. P. A. Norstedt ans Soner, Stockholm

    Google Scholar 

  • Kortsch S, Primicerio R, Fossheim M, Dolgov AV, Aschan M (2015) Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc R Soc B 282:20151546

    Article  Google Scholar 

  • Livermore R, Nankivell A, Eagles G, Morris P (2005) Paleogene opening of Drake passage. Earth Planet Lett 236:459–470

    Article  CAS  Google Scholar 

  • Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182:975–981

    Article  CAS  Google Scholar 

  • Okutani T (1990) Squids, cuttlefish and octopuses. Mar Behav Physiol 18:1–17. doi:10.1080/10236249009378778

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    Article  CAS  Google Scholar 

  • Pierce GJ, Allcock AL, Bruno I, Bustamante P, González AF, Guerra A, Jereb P, Lefkaditou E, Malham SK, Moreno A, Pereira J, Piatkowski U, Rasero M, Sánchez P, Santos MB, Santurtun M, Seixas S, Sobrino I, Villanueva R (2010) Cephalopod biology and fisheries in Europe. International Council for the Exploration of the Sea, Copenhagen

    Google Scholar 

  • Pimentel MS, Trubenbach K, Faleiro F, Boavida-Portugal J, Repolho T, Rosa R (2012) Impact of ocean warming on the early ontogeny of cephalopods: a metabolic approach. Mar Biol 159:2051–2059

    Article  Google Scholar 

  • Ramos JE, Pecl GT, Moltschaniwskyj NA, Strugnell JM, León RI, Semmens JM (2014) Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia. PLoS ONE 9:e103480

    Article  Google Scholar 

  • Reid A, Jereb P, Roper CFE (2005) Family Sepiidae. In: Jereb P, Roper CFE (eds) Cephalopods of the world An annotated and illustrated catalogue of species known to date. FAO Species Catalogue for Fishery Purposes, Rome, pp 57–152

    Google Scholar 

  • Richardson AJ, Poloczanska ES (2008) Ocean science: under-resourced, under threat. Science 320:1294–1295

    Article  CAS  Google Scholar 

  • Rodhouse PG (2013) Role of squid in the Southern Ocean pelagic ecosystem and the possible consequences of climate change. Deep Sea Res II 95:129–138

    Article  CAS  Google Scholar 

  • Rodhouse PG, Xavier JC, Griffiths H (2014) Southern Ocean squid. In: De Broyer C, Koubbi P, Griffiths H, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Raymond B, Ropert-Coudert Y, van de Putte A (eds) The CAML/SCAR-MarBIN biogeographic atlas of the Southern ocean. Scientific Committee on Antarctic Research, Cambridge, pp 284–289

    Google Scholar 

  • Ruiz-Cooley RI, Ballance LT, McCarthy MD (2013) Range expansion of the jumbo squid in the NE Pacific: δ15N decrypts multiple origins, migration and habitat use. PLoS ONE 8:e59651

    Article  CAS  Google Scholar 

  • Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20. doi:10.1016/j.jembe.2007.06.012

    Article  Google Scholar 

  • Straneo F, Heimbach P (2013) North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 504:36–43

    Article  CAS  Google Scholar 

  • Sykes AV, Domingues P, Andrade JP (2014) Sepia officinalis. In: Iglesias J, Fuentes L, Villanueva R (eds) Cephalopod culture. Springer, Berlin, pp 175–204

    Chapter  Google Scholar 

  • Walczowski W, Piechura J (2006) New evidence of warming propagating toward the Arctic Ocean. Geophys Res Lett 33:L12601

    Article  Google Scholar 

  • Ward P, Boletzky SV (1984) Shell implosion depth and implosion morphologies in three species of Sepia (Cephalopoda) from the Mediterranean Sea. J Mar Biol Assoc U K 64:955–966

    Article  Google Scholar 

  • Xavier JC, Cherel Y (2009) Cephalopod beak guide for the Southern Ocean. British Antarctic Survey, Cambridge

    Google Scholar 

  • Xavier JC, Rodhouse PG, Trathan PN, Wood AG (1999) A geographical information system (GIS) atlas of cephalopod distribution in the Southern Ocean. Antarct Sci 11:61–62

    Article  Google Scholar 

  • Xavier JC, Allcock L, Cherel Y, Lipinski MR, Gomes-Pereira JN, Pierce G, Rodhouse PGK, Rosa R, Shea L, Strugnell J, Vidal E, Villanueva R, Ziegler A (2015) Future challenges in cephalopod research. J Mar Biol Assoc U K 95:999–1015

    Article  Google Scholar 

  • Young RE, Vecchione M, Donovan D (1998) The evolution of coleoid cephalopods and their present biodiversity and ecology. S Afr J Mar Sci 20:393–420

    Article  Google Scholar 

  • Zeidberg LD, Robison BH (2007) Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proc Nat Acad Sci 104:12948–12950

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Roger Villanueva for the numerous discussions and contributions to previous drafts and Tom Bracegirdle, Dan Jones, Alexey Golikov and Emma Boland for advice on polar oceanography. This research is part of the SCAR AnT-ERA and ICED programs. JX is supported by the Investigator FCT program (IF/00616/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José C. Xavier.

Additional information

Responsible Editor: G. Pierce.

Reviewed By Z. Doubleday and M. Lipinski.

This article is part of the Topical Collection on Invasive Species.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, J.C., Peck, L.S., Fretwell, P. et al. Climate change and polar range expansions: Could cuttlefish cross the Arctic?. Mar Biol 163, 78 (2016). https://doi.org/10.1007/s00227-016-2850-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2850-x

Keywords

Navigation