Skip to main content
Log in

Predicting migratory paths of post-smolt Atlantic salmon (Salmo salar)

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Atlantic salmon is a highly migratory species that has experienced severe population declines. High mortality during the post-smolt period, when fish are migrating from rivers to their open-ocean wintering grounds, may be limiting population recovery, but little is known about this life stage. We used an individual-based model to evaluate the potential influences of ocean conditions (currents, temperature) on post-smolt salmon migration in the Gulf of Maine. A range of orientation behaviors were tested and results indicated that Atlantic salmon migration varied by year, natal river, and orientation behavior. The rate at which post-smolt salmon were able to make it across the Gulf of Maine was negatively correlated with coastal current strength. The response of migration rates to these factors varied among the potential orientation behaviors. For temperature-dependent orientation behaviors, migration was positively correlated with temperature. This modeling approach, based on field observations, is a useful technique for investigating variability in migration of endangered populations when in situ experiments are not possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alerstam T (2006) Conflicting evidence about long-distance animal migration. Science 313:791–793

    Article  CAS  Google Scholar 

  • Azumaya T, Ishida Y (2004) An evaluation of the potential influence of SST and currents on the oceanic migration of juvenile and immature chum salmon (Oncorhynchus keta) by a simulation model. Fish Oceanogr 13:10–23

    Article  Google Scholar 

  • Batchelder HP, Edwards CA, Powell TM (2002) Individual-based models of copepod populations in coastal upwelling regions: implications of physiologically and environmentally influenced diel vertical migration on demographic success and nearshore retention. Prog Oceanogr 53:307–333. doi:10.1016/S0079-6611(02)00035-6

    Article  Google Scholar 

  • Boisclair D (2004) The status of Atlantic salmon (Salmo salar): populations and habitats. Can J Fish Aquat Sci 61:2267–2270

    Article  Google Scholar 

  • Booker DJ, Wells NC, Smith PI (2008) Modelling the trajectories of migrating Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 65:352–361

    Article  Google Scholar 

  • Bracis C, Anderson JJ (2012) An investigation of the geomagnetic imprinting hypothesis for salmon geomagnetic imprinting hypothesis for salmon. Fish Oceanogr 21:170–181. doi:10.1111/j.1365-2419.2012.00617.x

    Article  Google Scholar 

  • Burke BJ, Liermann MC, Teel DJ, Anderson JJ (2013) Environmental and geospatial factors drive juvenile Chinook salmon distribution during early ocean migration. Can J Fish Aquat Sci 70:1167–1177. doi:10.1139/cjfas-2012-0505

    Article  Google Scholar 

  • Burke B, Anderson J, Baptista A (2014) Evidence for multiple navigational sensory capabilities of Chinook salmon. Aquat Biol 20:77–90. doi:10.3354/ab00541

    Article  Google Scholar 

  • Byron C, Burke B (2014) Salmon ocean migration models suggest a variety of population-specific strategies. Rev Fish Biol Fish 24:737–756. doi:10.1007/s11160-014-9343-0

    Article  Google Scholar 

  • Byron CJ, Pershing A, Stockwell J, Xue H, Kocik J (2014) Migration model of post-smolt Atlantic salmon in the Gulf of Maine. Fish Oceanogr 23:172–189

    Article  Google Scholar 

  • Carlin B (1955) Tagging of salmon smolts in the River Lagan. Migratory fish committee. Communic. No 22/1955. Vandringsfiskutredningen. Meddelande nr 22 1955

  • Chaput G, Legault CM, Reddin DG, Caron F, Amiro PG (2005) Provision of catch advice taking account of non-stationarity in productivity of Atlantic salmon (Salmo salar L.) in the Northwest Atlantic. ICES J Mar Sci 62:131–143. doi:10.1016/j.icesjms.2004.10.006

    Article  Google Scholar 

  • Chittenden CM, ÅDlandsvik B, Pedersen O-P, Righton D, Rikardsen AH (2013) Testing a model to track fish migrations in polar regions using pop-up satellite archival tags. Fish Oceanogr 22:1–13. doi:10.1111/fog.12000

    Article  Google Scholar 

  • Churchill JH, Pettigrew NR, Signell RP (2005) Structure and variability of the western Maine coastal current. Deep Sea Res II 52:2392–2410

    Article  Google Scholar 

  • Cooke SJ, Iverson SJ, Stokesbury MJW, Hinch SG, Fisk AT, VanderZwaag DL, Apostle R, Whoriskey F (2011) Ocean Tracking Network Canada: a network approach to addressing critical issues in fisheries and resource management with implications for ocean governance. Fisheries 36:583–592

    Article  Google Scholar 

  • Dingle H (1996) Migration: the biology of life on the move. Oxford University Press, New York

    Google Scholar 

  • Dingle H, Drake VA (2007) What is migration? Bioscience 57:113–121. doi:10.1641/b570206

    Article  Google Scholar 

  • Duriez O, Bauer S, Destin A, Madsen J, Nolet BA, Stillman RA, Klaassen M (2009) What decision rules might pink-footed geese use to depart on migration? An individual-based model. Behav Ecol 20:560–569. doi:10.1093/beheco/arp032

    Article  Google Scholar 

  • Friedland KD (1998) Ocean climate influences on critical Atlantic salmon (Salmo salar) life history events. Can J Fish Aquat Sci 55(Suppl. 1):119–130

    Article  Google Scholar 

  • Friedland KD, Todd CD (2012) Changes in northwest Atlantic Arctic and subarctic conditions and growth response of Atlantic salmon. Polar Biol 35:593–609

    Article  Google Scholar 

  • Friedland KD, Hansen LP, Dunkley DA, MacLean JC (2000) Linkange between ocean climate, post-smolt growth, and survival of Atlantic salmon (Salmo salar L.) in the North Sea area. ICES J Mar Sci 57:419–429

    Article  Google Scholar 

  • Griebeler EM, Seitz A (2002) An individual based model for the conservation of the endangered Large Blue Butterfly, Maculinea arion (Lepidoptera: Lycaenidae). Ecol Model 156:43–60. doi:10.1016/S0304-3800(02)00131-X

    Article  Google Scholar 

  • Hare S, Mantua N (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr 47:103–145

    Article  Google Scholar 

  • Healey MC, Thomson KA, Leblond PH, Huato L, Hinch SG, Walters CJ (2000) Computer simulations of the effects of the Sitka eddy on the migration of sockeye salmon returning to British Columbia. Fish Oceanogr 9:271–281

    Article  Google Scholar 

  • Hedger RD, Martin F, Hatin D, Caron F, Whoriskey FG, Dodson JJ (2008) Active migration of wild Atlantic salmon Salmo salar smolt through a coastal embayment. Mar Ecol Prog Ser 355:235–246. doi:10.3354/meps07239

    Article  Google Scholar 

  • Hedger RD, Hatin D, Dodson JJ, Martin F, Fournier D, Caron F, Whoriskey FG (2009) Migration and swimming depth of Atlantic salmon kelts Salmo salar in coastal zone and marine habitats. Mar Ecol Prog Ser 392:179–192

    Article  Google Scholar 

  • Hetland RD, Signell RP (2005) Modeling coastal current transport in the Gulf of Maine. Deep Sea Res II 52:2430–2449

    Article  Google Scholar 

  • Holm M, Holst JC, Hansen LP (2000) Spatial and temporal distribution of post-smolts of Atlantic salmon (Salmo salar L.) in the Norwegian Sea and adjacent areas. ICES J Mar Sci 57:955–964. doi:10.1006/jmsc.2000.0700

    Article  Google Scholar 

  • ICES (2009) Report of the workshop on learning from salmon tagging records (WKLUSTRE). SCICOM Steering Group on Ecosystems Function, ICES CM 2009/DFC:05, London, UK

  • ICES (2012) Report of the Working group on North Atlantic Salmon (WGNAS), 26, March–4 April 2012, Copenhagen, Denmark. ICES CM 2012/ACOM:09. 322 pp. http://www.ices.dk/reports/ACOM/2012/WGNAS/wgnas_2012.pdf

  • Ji RB, Davis CS, Chen CS, Townsend DW, Mountain DG, Beardsley RC (2008) Modeling the influence of low-salinity water inflow on winter-spring phytoplankton dynamics in the Nova Scotian Shelf–Gulf of Maine region. J Plankton Res 30:1399–1416. doi:10.1093/plankt/fbn091

    Article  CAS  Google Scholar 

  • Jonsson B, Jonsson N (2009) A review of the likely effects of climate change on anadromous Atlantic salmon, Salmo salar, and brown trout, Salmo trutta, with particular reference to water temperature and flow. J Fish Biol 75:2381–2447. doi:10.1111/j.1095-8649.2009.02380.x

    Article  CAS  Google Scholar 

  • Kocik JF, Hawkes JP, Sheehan TF, Music PA, Beland KF (2009) Assessing estuarine and coastal migration and survival of wild Atlantic salmon smolts from the Narraguagus River Maine using ultrasonic telemetry. Am Fish Soc Symp 69:293–310

    Google Scholar 

  • Koehl MAR, Srother JA, Reidenbach MA, Koseff JR, Hadfield MG (2007) Individual-based model of larval transport to coral reefs in turbulent, wave-driven flow: behavioral responses to dissolved settlement inducer. Mar Ecol Prog Ser 335:1–8

    Article  Google Scholar 

  • Lacroix GL, Knox D (2005) Distribution of Atlantic salmon (Salmo salar) postsmolts of different origins in the Bay of Fundy and Gulf of Maine and evaluation of factors affecting migration, growth, and survival. Can J Fish Aquat Sci 62:1363–1376

    Article  Google Scholar 

  • Lacroix GL, McCurdy P (1996) Migratory behaviour of post-smolt Atlantic salmon during initial stages of seaward migration. J Fish Biol 49:1086–1101. doi:10.1111/j.1095-8649.1996.tb01780.x

    Article  Google Scholar 

  • Lacroix G, Knox D, Sheehan TF, Renkawitz MD, Bartron ML (2012) Distribution of emigrating Atlantic salmon post-smolts of U.S. hatchery origin in the northeastern Gulf of Maine. Trans Am Fish Soc 141:934–942

    Article  Google Scholar 

  • Letcher BH, Priddy JA, Walters JR, Crowder LB (1998) An individual-based, spatially-explicit simulation model of the population dynamics of the endangered red-cockaded woodpecker, Picoides borealis. Biol Conserv 86:1–14. doi:10.1016/S0006-3207(98)00019-6

    Article  Google Scholar 

  • Lohmann KJ, Lohmann CMF, Endres CS (2008) The sensory ecology of ocean navigation. J Exp Biol 211:1719–1728. doi:10.1242/jeb.015792

    Article  Google Scholar 

  • Martin F, Hedger RD, Dodson JJ, Fernandes L, Hatin D, Caron F, Whoriskey FG (2009) Behavioural transition during the estuarine migration of wild Atlantic salmon (Salmo salar L.) smolt. Ecol Freshw Fish 18:406–417

    Article  Google Scholar 

  • Miller AS, Sheehan TF, Spencer RC, Renkawitz MD, Friedland KD, Meiseter AL (2012) Description of the historic US Atlantic Salmon (Salmo salar) tagging programs and subsequent databases. Northeast Fish Sci Cent Ref Doc 12–13:56

    Google Scholar 

  • Moore A, Freake SM, Thomas IM (1990) Magnetic particles in the lateral line of Atlantic salmon (Salmo salar L.). Philos Trans R Soc Lond B Biol Sci 329:11–15

    Article  Google Scholar 

  • Mork K, Gilbey J, Hansen L, Jensen A, Jacobsen J, Holm M, Holst J, ÓMaioléídigh N, Vikebo F, McGinnity P, Melle W, Thomas K, Verspoor E, Wennevik V (2012) Modelling the migration of post-smolt Atlantic salmon (Salmo salar) in the Northeast Atlantic. ICES J Mar Sci. doi:10.1093/icesjms/fss108

    Google Scholar 

  • O’Dor R, Acosta J, Bergstad OA, Brainard R, Brattey J, Canals M, Costa D, Gjerde K, Gunn J, Horne JK, Iken K, Kocik J, Konar B, Payne J, Reid C, Robinson B, Steinke D, Berghe EV (2010) Bringing new life to ocean observation. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of Ocean Obs’09: Sustained Ocean Observations and Information for Society. ESA publication WPP-306, Venice, Italy, 21–25 September 2009

  • Økland F, Thorstad EB, Finstad B, Sivertsgård R, Plantalech N (2006) Swimming speeds and orientation of wild Atlantic salmon post-smolts during the first stage of the marine migration. Fish Manage Ecol 13:271–274

    Article  Google Scholar 

  • Parry HR, Evans AJ, Morgan D (2006) Aphid population response to agricultural landscape change: a spatially explicit, individual-based model. Ecol Model 199:451–463. doi:10.1016/j.ecolmodel.2006.01.006

    Article  Google Scholar 

  • Pettigrew N, Churchill JH, Janzen CD, Magnum LJ, Signell RP, Thomas AC, Townsend DW, Wallinga JP, Xue H (2005) The kinematic and hydrographic structure of the Gulf of Maine Coastal Current. Deep Sea Res Part II 52:2369–2391

    Article  Google Scholar 

  • Peyronnet A, Friedland KD, Maoileidigh NÓ (2008) Different ocean and climate factors control the marine survival of wild and hatchery Atlantic salmon Salmo salar in the north-east Atlantic Ocean. J Fish Biol 73:945–962

    Article  Google Scholar 

  • Pimm SL, Jones HL, Diamond J (1988) On the risk of extinction. Am Nat 132:757–785

    Article  Google Scholar 

  • Putman NF, Lohmann KJ, Putman EM, Quinn TP, Klimley AP, Noakes DLG (2013) Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon. Curr Biol 23:312–316. doi:10.1016/j.cub.2012.12.041

    Article  CAS  Google Scholar 

  • Railsback SF, Lamberson RH, Harvey BC, Duffy WE (1999) Movement rules for individual-based models of stream fish. Ecol Model 123:73–89

    Article  Google Scholar 

  • Renkawitz MD, Sheehan TF, Goulette GS (2012) Swimming depth, behavior, and survival of Atlantic salmon postsmolts in Penobscot Bay, Maine. Trans Am Fish Soc 141:1219–1229. doi:10.1080/00028487.2012.688916

    Article  Google Scholar 

  • Rijnsdorp AD, Peck MA, Engelhard GH, Möllmann C, Pinnegar JK (2009) Resolving the effect of climate change on fish populations. ICES J Mar Sci 66:1570–1583. doi:10.1093/icesjms/fsp056

    Article  Google Scholar 

  • Robinson RA, Crick HQP, Learmonth JA, Maclean IMD, Thomas CD, Bairlein F, Forchhammer MC, Francis CM, Gill JA, Godley BJ, Harwood J, Hays GC, Huntley B, Hutson AM, Pierce GJ, Rehfisch MM, Sims DW, Santos MB, Sparks TH, Stroud DA, Visser ME (2008) Travelling through a warming world: climate change and migratory species. Endanger Species Res 7(2):87–99

    Google Scholar 

  • Sheehan TF, Renkawitz MD, Brown R (2011) Surface trawl survey for U.S. origin Atlantic salmon Salmo salar. J Fish Biol 79:374–398

    Article  CAS  Google Scholar 

  • Smith IP, Booker DJ, Wells NC (2009) Bioenergetic modelling of the marine phase of Atlantic salmon (Salmo salar L.). Mar Environ Res 67:246–258

    Article  CAS  Google Scholar 

  • Thorstad EB, Whoriskey F, Uglem I, Moore A, Rikardsen AH, Finstad B (2012) A critical life stage of the Atlantic salmon Salmo salar: behaviour and survival during the smolt and initial post-smolt migration. J Fish Biol 81:500–542. doi:10.1111/j.1095-8649.2012.03370.x

    Article  CAS  Google Scholar 

  • USASAC (2010) Annual report of the U.S. Atlantic Salmon Assessment Committee. Prepared for U.S. Section to NASCO. Annual Report 2009/22, 22

  • Walter EE, Scandol JP, Healey MC (1997) A reappraisal of the ocean migration patterns of Fraser River sockeye (Oncorhynchus nerka) by individual-based modeling. Can J Aquat Sci 54:847–858

    Article  Google Scholar 

  • Willis J (2011) Modelling swimming aquatic animals in hydrodynamic models. Ecol Model 222:3869–3887. doi:10.1016/j.ecolmodel.2011.10.004

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:675–693. doi:10.1007/s00359-005-0627-7

    Article  Google Scholar 

  • Xue H, Chai F, Pettigrew N (2000) A model study of the seasonal circulation in the Gulf of Maine. J Phys Oceanogr 30:1111–1135

    Article  Google Scholar 

  • Xue H, Shi L, Cousins S, Pettigrew NR (2005) The GoMOOS nowcast/forecast system. Cont Shelf Res 25:2122–2146

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by CINAR-NOAA Grant NA09OAR4320129. We are grateful to Steve Cousins for providing the GoMOOS nowcast/forecast predictions. John Kocik and Tim Sheehan provided helpful advice and information on many aspects of this research. Katherine Mills helped with statistical analysis. Nicholas Record provided advice on Matlab coding for model development. The Gulf of Maine Research Institute internship program provided P. Moriarty with the opportunity to work on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Byron.

Additional information

Responsible Editor: E. Hunter.

Reviewed by F. Whoriskey and an undisclosed expert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriarty, P.E., Byron, C.J., Pershing, A.J. et al. Predicting migratory paths of post-smolt Atlantic salmon (Salmo salar). Mar Biol 163, 74 (2016). https://doi.org/10.1007/s00227-016-2847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2847-5

Keywords

Navigation