Skip to main content
Log in

Size-dependent predation of the mesopredator Marthasterias glacialis (L.) (Asteroidea)

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Asteroids are largely recognized as important predators in all of the world’s oceans and for this reason, they play a crucial role in shaping the structure and functioning of benthic ecosystems. The spiny starfish Marthasterias glacialis is generally considered a voracious predator of molluscs, in particular bivalves. Using field observations and carbon (δ13C) and nitrogen (δ15N) stable isotopes, we explored possible changes in diet in relation to size of M. glacialis. Data were collected at Ustica Island (Southern Tyrrhenian Sea) from June 2008 to June 2010. M. glacialis showed a size shift in feeding preferences due to different use of food items: bivalves, Columbella rustica, Euthria cornea and Trochoidea were strongly selected by small starfish whereas the larger ones preferred Arbacia lixula and Paracentrotus lividus. The clear picture that emerged is that large M. glacialis is able to control sea urchin populations and indirectly Mediterranean rocky reef ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abitia-Cardenas LA, Galvan-Magaña F, Gutierrez-Sanchez FJ, Rodriguez-Romero J, Aguilar-Palomino B, Moehl-Hitz A (1999) Diet of blue marlin Makaira mazara off the coast of Cabo San Lucas, Baja California Sur, Mexico. Fish Res 44(1):95–100

    Article  Google Scholar 

  • Agnetta D, Bonaviri C, Badalamenti F, Scianna C, Vizzini S, Gianguzza P (2013) Functional traits of two co-occurring sea urchins across a barren/forest patch system. J Sea Res 76:170–177

    Article  Google Scholar 

  • Agnetta D, Badalamenti F, Ceccherelli G, Di Trapani F, Bonaviri C, Gianguzza P (2015) Role of two co-occurring Mediterranean sea urchins in the formation of barren from Cystoseira canopy. Estuar Coast Mar Sci 152:73–77

    Article  Google Scholar 

  • Bacha M, Amara R (2012) Inter-cohort differences in growth, condition and feeding of juvenile anchovy (Engraulis encrasicolus) in the Gulf of Bejaia (Algerian coast, SW Mediterranean): implications for recruitment success. Fish Res 129:73–81

    Article  Google Scholar 

  • Berg J (1979) Discussion of methods of investigating the food of fishes, with reference to a preliminary study of the prey of Gobiusculus flavescens (Gobiidae). Mar Biol 50:263–273

    Article  Google Scholar 

  • Bonaviri C, Fernandez TV, Badalamenti F, Gianguzza P, Di Lorenzo M, Riggio S (2009) Fish versus starfish predation in controlling sea urchin populations in Mediterranean rocky shores. Mar Ecol Prog Ser 382:129–138

    Article  Google Scholar 

  • Bonaviri C, Fernandez TV, Fanelli G, Badalamenti F, Gianguzza P (2011) Leading role of the sea urchin Arbacia lixula in maintaining the barren state in southwestern Mediterranean. Mar Biol 158(11):2505–2513

    Article  Google Scholar 

  • Bonaviri C, Gianguzza P, Pipitone C, Hereu B (2012) Micropredation on sea urchins as a potential stabilizing process for rocky reefs. J Sea Res 73:18–23

    Article  Google Scholar 

  • Branch GM (1978) The responses of south african patellid limpets to invertebrate predators. Zool Afr 13(2):221–232

    Article  Google Scholar 

  • Bulleri F, Benedetti-Cecchi L, Cinelli F (1999) Grazing by the sea urchins Arbacia lixula (L.) and Paracentrotus lividus (Lam.) in the Northwest Mediterranean. J Exp Mar Biol Ecol 241(1):81–95

    Article  Google Scholar 

  • Bulleri F, Bertocci I, Micheli F (2002) Interplay of encrusting coralline algae and sea urchins in maintaining alternative habitats. Mar Ecol Prog Ser 243:101–109

    Article  Google Scholar 

  • Chintiroglou C, Koukouras A (1991) Observations on the feedings habits of Calliactis parasitica (Couch, 1842), Anthozoa, Cnidaria. Oceanol Acta 14:389–396

    Google Scholar 

  • Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. Primer-E, Plymouth

    Google Scholar 

  • Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J Exp Mar Biol Ecol 366:56–69

    Article  Google Scholar 

  • Colombo F, Costa V, Dubois SF, Gianguzza P, Mazzola A, Vizzini S (2013) Trophic structure of vermetid reef community: high trophic diversity at small spatial scales. J Sea Res 77:93–99

    Article  Google Scholar 

  • Dance C, Savy S (1987) Predation on Paracentrotus lividus by Marthasterias glacialis: an in situ experiment at Port-Cros (France, Mediterranean). Posidonia Newsl 1(2):35–41

    Google Scholar 

  • Di Trapani F, Aglieri G, Badalamenti F, Bonaviri C, Gianguzza P, Riggio S (2009) Distribution and diet of Marthasterias glacialis at Ustica Island MPA. Biol Mar Medit 16(1):262–263

    Google Scholar 

  • Duggins DO (1983) Starfish predation and the creation of mosaic patterns in a kelp-dominated community. Ecology 64(6):1610–1619

    Article  Google Scholar 

  • Ebling FJ, Hawkins AD, Kitching FA, Muntz I, Pratt VM (1966) The ecology of Lough Hyne. XVI. Predation and diurnal migration in the Paracentrotus population. J Anim Ecol 35:559–566

    Article  Google Scholar 

  • Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC et al (2011) Trophic downgrading of planet earth. Science 333(6040):301–306

    Article  CAS  Google Scholar 

  • Fanelli G, Piraino S, Esposito L, Boero F (1999) Opposite roles of sea urchins and starfishes in marine benthic communities. In: Carnevali C, Bonasoro F (eds) Echinoderm research. Balkema, Rotterdam, pp 453–457

    Google Scholar 

  • Forster GR (1962) Observations on the ormer population of Guernsey. Haliotis tuberculata (Gastropoda). J Mar Biol Assoc U K 42(3):493–498

    Article  Google Scholar 

  • Freeman A (2006) Size-dependent trait-mediated indirect interactions among sea urchin herbivores. Behav Ecol 17(2):182–187

    Article  Google Scholar 

  • Frid CLJ (1992) Foraging behavior of the spiny starfish Marthasterias glacialis in Lough Ine, Co Cork. Mar Behav Physiol 19(4):227–239

    Article  Google Scholar 

  • Galasso NM, Bonaviri C, Di Trapani F, Picciotto M, Gianguzza P, Agnetta D, Badalamenti F (2015) Fish-seastar facilitation leads to algal forest restoration on protected rocky reefs. Sci Rep 5:12409. doi:10.1038/srep12409

    Article  CAS  Google Scholar 

  • Gaymer CF, Himmelman JH (2008) A keystone predatory sea star in the intertidal zone is controlled by a higher-order predatory sea star in the subtidal zone. Mar Ecol Prog Ser 370:143–153

    Article  Google Scholar 

  • Gaymer CF, Dutil C, Himmelman JH (2004) Prey selection and predatory impact of four major sea stars on a soft bottom subtidal community. J Exp Mar Biol Ecol 313(2):353–374

    Article  Google Scholar 

  • Gianguzza P, Chiantore M, Bonaviri C, Cattaneo-Vietti R, Vielmini I, Riggio S (2006) The effects of recreational Paracentrotus lividus fishing on distribution patterns of sea urchins at Ustica Island MPA (Western Mediterranean, Italy). Fish Res 81(1):37–44

    Article  Google Scholar 

  • Gianguzza P, Bonaviri C, Guidetti P (2009a) Crushing predation of the spiny star Marthasterias glacialis upon the sea urchin Paracentrotus lividus. Mar Biol 156(5):1083–1086

    Article  Google Scholar 

  • Gianguzza P, Badalamenti F, Gianguzza F, Bonaviri C, Riggio S (2009b) The operational sex ratio of the sea urchin Paracentrotus lividus populations: the case of the Mediterranean marine protected area of Ustica Island (Tyrrhenian Sea, Italy). Mar Ecol-Evol Persp 30(1):125–132

    Article  Google Scholar 

  • Gianguzza P, Bonaviri C, Milisenda G, Barcellona A, Agnetta D, Fernandez TV, Badalamenti F (2010) Macroalgal assemblage type affects predation pressure on sea urchins by altering adhesion strength. Mar Environ Res 70(1):82–86

    Article  CAS  Google Scholar 

  • Gianguzza P, Di Trapani F, Bonaviri C, Visconti G, Deidun A, Badalamenti F (2015) New body metrics to determine asteroid size and weight directly in the field. Thalassas 31(1):73–82

    Google Scholar 

  • Griffiths RJ (1981) Predation on the bivalve Choromytilus meridionalis by the gastropod Natica tecta. J Molluscan Stud 47(1):112–120

    Google Scholar 

  • Guidetti P (2004) Consumers of sea urchins, Paracentrotus lividus and Arbacia lixula, in shallow Mediterranean rocky reefs. Helgol Mar Res 58(2):110–116

    Article  Google Scholar 

  • Guidetti P (2006) Estimating body size of sea urchins, Paracentrotus lividus and Arbacia lixula, from stomach contents of Diplodus sargus, a Mediterranean predatory fish. J Appl Ichthyol 22(1):91–93

    Article  Google Scholar 

  • Guidetti P, Mori M (2005) Morpho-functional defences of Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators. Mar Biol 147(3):797–802

    Article  Google Scholar 

  • Guidetti P, Sala E (2007) Community-wide effects of marine reserves in the Mediterranean Sea. Mar Ecol Prog Ser 335:43–56

    Article  Google Scholar 

  • Guillou M (1996) Biotic and abiotic interactions controlling starfish outbreaks in the Bay of Douarnenez, Brittany, France. Oceanol Acta 19(3–4):415–420

    Google Scholar 

  • Guler M, Lok A (2015) Foraging behaviors of sea stars, Marthasterias glacialis and Astropecten aranciacus (Asteroidea) and predator-prey interactions with warty venus clam, Venus verrucosa (Bivalvia). J Exp Mar Biol Ecol 465:99–106

    Article  Google Scholar 

  • Hyslop E (1980) Stomach contents analysis—a review of methods and their application. J Fish Biol 17(4):19

    Article  Google Scholar 

  • Ivlev VS (1961) Experimental ecology of the feeding of fishes. Yale University Press, New Haven

    Google Scholar 

  • Kempf M (1962) Recherches d’écologie compareé sur Paracentrotus lividus et Arbacia lixula. Rec Trav St Mar Endoume 25:47–116

    Google Scholar 

  • Kitching JA, Thain VM (1983) The ecological impact of the sea urchin Paracentrotus lividus (Lamarck) in Lough Ine, Ireland. Philos Trans R Soc Lond 300(B):513–552

    Article  Google Scholar 

  • Krebs CJ (1989) Ecological methodology. Harper and Row, New York

    Google Scholar 

  • La Mesa G, Vacchi M (1999) An analysis of the coastal fish assemblage of the Ustica Island marine reserve (Mediterranean Sea). Mar Ecol PSZNI 20(2):147–165

    Article  Google Scholar 

  • Labropoulou M, Eleftheriou A (1997) The foraging ecology of two pairs of congeneric demersal fish species: importance of morphological characteristics in prey selection. J Fish Biol 50(2):324–340

    Article  Google Scholar 

  • Lawrence JM (1992) Arm loss and regeneration in Asteroidea (Echinodermata). Echinoderm Res 1991:39–52

    Google Scholar 

  • Lawrence JM, Larrain A (1994) The cost of arm autotomy in the starfish Stichaster striatus. Mar Ecol Prog Ser 109(2–3):311–313

    Article  Google Scholar 

  • Magennis B (1981) Feeding habits of Marthasterias glacialis (L). J Sherkin Isl 1(2):27–34

    Google Scholar 

  • Magnesen T, Redmond KJ (2012) Potential predation rates by the sea stars Asterias rubens and Marthasterias glacialis, on juvenile scallops, Pecten maximus, ready for sea ranching. Aquac Int 20(1):189–199

    Article  Google Scholar 

  • McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2):378–390

    Article  CAS  Google Scholar 

  • Milazzo M, Chemello R, Badalamenti F, Riggio S (2000) Molluscan assemblages associated with photophilic algae in the Marine Reserve of Ustica Island (Lower Tyrrhenian Sea, Italy). Ital J Zool 67(3):287–295

    Article  Google Scholar 

  • O’Sullivan D, Emmerson M (2011) Marine reserve designation, trophic cascades and altered community dynamics. Mar Ecol Prog Ser 440:115–128

    Article  Google Scholar 

  • Paine RT (1974) Intertidal community structure. Oecologia 15:93–120

    Article  Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5(3):e9672. doi:10.1371/journal.pone.0009672

    Article  Google Scholar 

  • Penney AJ, Griffiths CL (1984) Prey selection and the impact of the starfish Marthasterias glacialis (L.) and other predators on the mussel Choromytilus meridionalis (Krauss). J Exp Mar Biol Ecol 75(1):19–36

    Article  Google Scholar 

  • Pérez-Portela R, Villamor A, Almada V (2010) Phylogeography of the sea star Marthasterias glacialis (Asteroidea, Echinodermata): deep genetic divergence between mitochondrial lineages in the north-western mediterranean. Mar Biol 157:2015–2028

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Pratchett MS (2005) Dynamics of an outbreak population of Acanthaster planci at Lizard Island, northern Great Barrier Reef (1995–1999). Coral Reefs 24(3):453–462

    Article  Google Scholar 

  • Pratchett MS (2007) Feeding preferences of Acanthaster planci (Echinodermata: Asteroidea) under controlled conditions of food availability. Pac Sci 61(1):113–120

    Article  Google Scholar 

  • Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bioscience 59(9):779–791

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Riggio S, Milazzo M (2004) Ricchezza specifica e biodiversità marina nell'isola di Ustica. Naturalista siciliano 28:559–586

    Google Scholar 

  • Rodriguez RS, Ojeda FP (1998) Behavioral responses of the sea urchin Tetrapygus niger to predators and food. Mar Freshw Behav Physiol 31(1):21–37

    Article  Google Scholar 

  • Sala E, Zabala M (1996) Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Mar Ecol Prog Ser 140(1–3):71–81

    Article  Google Scholar 

  • Sarà G, Lo Martire M, Sanfilippo M, Pulicano G, Cortese G, Mazzola A, Manganaro A, Pusceddu A (2011) Impacts of marine aquaculture at large spatial scales: evidences from N and P catchment loading and phytoplankton biomass. Mar Environ Res 71(5):317–324

    Article  Google Scholar 

  • Savy S (1987) Activity pattern of the sea-star, Marthasterias glacialis, in Port-Cros Bay (France, mediterranean coast). Mar Ecol PSZNI 8(2):97–106

    Article  Google Scholar 

  • Schroeter SC, Dixon J, Kastendiek J (1983) Effects of the starfish Patiria miniata on the distribution of the sea urchin Lytechinus anamesus in a southern Californian kelp forest. Oecologia 2:141–147

    Article  Google Scholar 

  • Tomas F, Alvarez-Cascos D, Turon X, Romero J (2006) Differential element assimilation by sea urchins Paracentrotus lividus in seagrass beds: implications for trophic interactions. Mar Ecol Prog Ser 306:125–131

    Article  Google Scholar 

  • Tuya F, Duarte P (2012) Role of food availability in the bathymetric distribution of the starfish Marthasterias glacialis (Lamk.) on reefs of northern Portugal. Scientia Marina 76(1):9–15

    Article  Google Scholar 

  • Valinassab T, Jalali S, Hafezieh M, Zarshenas G (2011) Evaluation of some feeding indices of Pomadasys kaakan in the Northern Persian Gulf. Iran J Fish Sci 10(3):497–504

    Google Scholar 

  • Verlaque MV (1987) Relations entre Paracentrotus lividus (Lamarck) et le phytobenthos de Mediterranee occidentale. In: Boudoresque CF (ed) Colloque international sur Paracentrotus lividus et les oursins comestibles. GIS Posidonie, Marseille, pp 5–36

    Google Scholar 

  • Verling E, Crook AC, Barnes DKA, Harrison SSC (2003) Structural dynamics of a sea-star (Marthasterias glacialis) population. J Mar Biol Assoc UK 83(3):583–592

    Article  Google Scholar 

Download references

Acknowledgments

N. Galasso and G. Aglieri significantly contributed to field sampling. Sample pre-treatment for stable isotope analysis was carried out by A. Mirasole and S. Noè, while isotopic analysis was performed by A. E. Aleo. Special thanks to Renato Chemello, Giovanni Fanelli and the anonymous reviewer for their constructive and challenging comments, which substantially improved this manuscript. Michelle Bowri revisited the English text. Chiara Bonaviri was supported by the Italian project FIRB (Contract No. RBFR12RXW). This study was funded by the research project “Monitoraggio delle popolazioni di Paracentrotus lividus e Arbacia lixula ai fini della tutela della diversità biologica dell’AMP Isola di Ustica”, under the Italian Ministry of the Environment (M.A.T.T.M - Ministero dell’Ambiente e della Tutela del Territorio e del Mare), University of Palermo (FFR 2012-13) and by the Flagship Project RITMARE – Italian Research for the Sea - funded by the Italian Ministry of Education, University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Di Trapani.

Ethics declarations

Conflict of interest

Sampling was conducted under a research permit from MPA management body of the Ustica Island (Port Authority of Palermo). All authors approved the final version of the manuscript, and consent to submit has been received from all co-authors. The authors declare no competing financial interests or conflict of interest.

Additional information

Responsible Editor: M.G. Chapman.

Reviewed by G. Fanelli and an undisclosed expert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gianguzza, P., Di Trapani, F., Bonaviri, C. et al. Size-dependent predation of the mesopredator Marthasterias glacialis (L.) (Asteroidea). Mar Biol 163, 65 (2016). https://doi.org/10.1007/s00227-016-2835-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2835-9

Keywords

Navigation