Skip to main content
Log in

Corticosterone levels in feathers and blood of rhinoceros auklets Cerorhinca monocerata are affected by variation in environmental conditions

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In order to fully understand factors that affect animals during their annual cycle, it is important to measure physiological and behavioral responses to environmental conditions in multiple seasons. We tested the hypothesis that corticosterone levels (CORT) are affected by spatial and temporal variations in marine environmental conditions by measuring levels in the feathers (grown outside of the breeding season) and blood (collected during the breeding season) of an abundant North Pacific seabird, the rhinoceros auklet Cerorhinca monocerata. Birds involved in our study bred on three widely dispersed colonies in three years in which oceanographic conditions differed markedly. Combined nitrogen (δ 15N) and carbon (δ 13C) stable isotope values in blood differed among colonies, while values in feathers did not, suggesting that individuals from the three colonies were segregated during the breeding season (as expected from foraging range around breeding colonies), but not during the nonbreeding period (as expected from genetic homogeneity). CORT showed the same pattern of dichotomy; of particular note, but contrary to our a priori prediction, blood CORT levels were higher in auklets that bred on a colony in which early chlorophyll-a bloom in local waters suggested good feeding conditions, than in auklets that bred on a colony with later local chlorophyll-a bloom. Also contrary to prediction, feather CORT was higher in a year featuring favorable, cold-water La Niña conditions than in a year of unfavorable, warm-water El Niño conditions; values in a third, moderate year were intermediate. We conclude that CORT levels are affected by spatiotemporal variation in marine environmental conditions, but relationships appear to depend heavily on context and thus require careful interpretation and more study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott CL, Millikin RL, Hipfner JM, Hatch S, Ito M, Watnuki Y, Burg TM (2014) Genetic structure of rhinoceros auklets, Cerorhinca monocerata, breeding in British Columbia, Alaska, and Japan. Mar Biol 161:275–283. doi:10.1007/s00227-013-2333-2

    Article  Google Scholar 

  • Barger CP, Kitaysky AS (2011) Isotopic segregation between sympatric seabird species increases with nutritional stress. Biol Lett 8:442–445. doi:10.1098/rsbl.2011.1020

    Article  Google Scholar 

  • Batten SD, Freeland HJ (2007) Plankton populations at the bifurcation of the North Pacific Current. Fish Oceanogr 16:536–546. doi:10.1111/j.1365-2419.2007.00448.x

    Article  Google Scholar 

  • Bertram DF, Kaiser GW (1993) Rhinoceros Auklet nestling diet may gauge Pacific sand lance recruitment. Can J Fish Aquat Sci 50:1908–1915. doi:10.1139/f93-213

    Article  Google Scholar 

  • Bertram DF, Golumbia T, Davoren GK, Harfenist A, Brown J (2002) Short visits reveal consistent patterns of interyear and intercolony variation in seabird nestling diet and performance. Can J Zool 80:2190–2199. doi:10.1139/Z02-211

    Article  Google Scholar 

  • Bonier F, Martin PR, Moore IT, Wingfield JC (2009) Do baseline glucocorticoids predict fitness? Trends Ecol Evol 24:634–642. doi:10.1016/j.tree.2009.04.013

    Article  Google Scholar 

  • Borstad G, Crawford W, Hipfner JM, Thomson R, Hyatt K (2011) Environmental control of the breeding success of rhinoceros auklets at Triangle Island, British Columbia. Mar Ecol Prog Ser 424:285–302. doi:10.3354/meps08950

    Article  Google Scholar 

  • Bortolotti GR, Marchant TA, Blas J, German T (2008) Corticosterone in feathers is a long-term, integrated measure of avian stress physiology. Funct Ecol 22:494–500. doi:10.1111/j.1365-2435.2008.01387.x

    Article  Google Scholar 

  • Bortolotti GR, Marchant TA, Blas J, Cabezas S (2009) Tracking stress: localisation, deposition and stability of corticosterone in feathers. J Exp Biol 212:1477–1482. doi:10.1242/jeb.022152

    Article  CAS  Google Scholar 

  • Bourgeon S, Leat EHK, Magnusdottir E, Furness RW, Strøm H, Petersen A, Gabrielsen GW, Hanssen SA, Bustnes JO (2014) Feather corticosterone levels on wintering grounds have no carry-over effects on breeding among three populations of Great Skuas (Stercorarius skua). PLoS ONE 9:e100439. doi:10.1371/journal.pone.0100439

    Article  Google Scholar 

  • Breuner CW, Delahunty B, Boonstra R (2013) Evaluating stress in natural populations of vertebrates: total CORT is not good enough? Funct Ecol 27:34–36. doi:10.1111/1365-2435.12016

    Article  Google Scholar 

  • Buck CL, O’Reilly KM, Kildaw SD (2007) Interannual variability of black-legged kittiwake productivity is reflected in baseline plasma corticosterone. Gen Comp Endocrinol 150:430–436. doi:10.1016/j.ygcen.2006.10.011

    Article  CAS  Google Scholar 

  • Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287. doi:10.3354/meps329281

    Article  CAS  Google Scholar 

  • Cherel Y, Hobson KA, Weimerskirch H (2000) Using stable isotope analysis of feathers to distinguish moulting and breeding origins of seabirds. Oecologia 122:155–162. doi:10.1007/PL00008843

    Article  Google Scholar 

  • Cherel Y, Hobson KA, Hassani S (2005) Isotopic discrimination between food and blood and feathers of captive penguins: implications for dietary studies in the wild. Physiol Biochem Zool 78:106–115. doi:10.1086/425202

    Article  Google Scholar 

  • Cherel Y, Jaeger A, Alderman R, Jaquemet S, Richard P, Wanless RM, Phillips RA, Thompson DR (2013) A comprehensive isotopic investigation of habitat preferences in nonbreeding albatrosses from the Southern Ocean. Ecography 36:277–286. doi:10.1111/j.1600-0587.2012.07466.x

    Article  Google Scholar 

  • Clinchy M, Zanette L, Boonstra R, Wingfield JC, Smith JNM (2004) Balancing food and predator pressure induces chronic stress in songbirds. Proc R Soc Lond B 271:2473–2479. doi:10.1098/rspb.2004.2913

    Article  Google Scholar 

  • Crawford WR, Irvine JR (2010) State of physical, biological, and selected fishery resources of Pacific Canadian marine ecosystems in 2009. DFO Can Sci Advis Sec Res Doc 2010/053 x + 163 p

  • Crawford WR, Irvine JR (2011) State of physical, biological, and selected fishery resources of Pacific Canadian marine ecosystems in 2010. DFO Can Sci Advis Sec Res Doc 2011/054 x + 163 p

  • Crawford WR, Irvine JR (2012) State of the physical biological, and selected resources of Pacific Canadian marine ecosystems in 2011. DFO Can Sci Advis Sec Res Doc 2012/072 xi + 142 p

  • Crespi EJ, Williams TD, Jessop TS, Delehanty B (2013) Life history and the ecology of stress: how do glucocorticoid hormones influence life-history variation in animals. Funct Ecol 27:93–106. doi:10.1111/1365-2435.12009

    Article  Google Scholar 

  • Cyr NE, Romero LM (2007) Chronic stress in free-living European starlings reduces corticosterone concentrations and reproductive success. Gen Comp Endocrinol 151:82–89. doi:10.1016/j.ygcen.2006.12.003

    Article  CAS  Google Scholar 

  • Doody LM, Wilhelm SI, McKay DW, Walsh CJ, Storey AE (2008) The effects of variable foraging conditions on Common Murre (Uria aalge) corticosterone concentrations and parental provisioning. Horm Behav 53:140–148. doi:10.1016/j.yhbeh.2007.09.009

    Article  CAS  Google Scholar 

  • Fontaine JJ, Arriero E, Schwabl H, Martin TE (2011) Nest predation and circulating corticosterone levels within and among species. Condor 113:825–833. doi:10.1525/cond.2011.110027

    Article  Google Scholar 

  • Friesen VL, Burg TM, McCoy K (2007) Mechanisms of population differentiation in seabirds. Mol Ecol 16:1765–1785. doi:10.1111/j.1365-294X.2006.03197.x

    Article  CAS  Google Scholar 

  • Gremillet D, Lewis S, Drapeau L, van Der Lingen CD, Huggett JA, Coetzee JC, Verheye HM, Daunt F, Wanless S, Ryan PG (2008) Spatial match-mismatch in the Benguela upwelling zone: should we expect chlorophyll and sea-surface temperature to predict marine predator distributions? J Appl Ecol 45:610–621. doi:10.1111/j.1365-2664.2007.01447.x

    Article  CAS  Google Scholar 

  • Harfenist A, Ydenberg RC (1995) Parental provisioning and predation risk in rhinoceros auklets (Cerorhinca monocerata)—effects on nestling growth and fledging. Behav Ecol 6:82–86. doi:10.1093/beheco/6.1.82

    Article  Google Scholar 

  • Hipfner JM, McFarlane-Tranquilla LA, Addison B, Hobson KA (2013) Trophic responses to the hatching of offspring in a central-place foraging seabird. J Ornith 154:965–970. doi:10.1007/s10336-013-0962-3

    Article  Google Scholar 

  • Howell SNG (2010) Molt in North American Birds. Houghton Mifflin Harcourt, Boston

    Google Scholar 

  • Jaeger A, Blanchard P, Richard P, Cherel Y (2009) Using carbon and nitrogen isotopic values of body feathers to infer inter- and intra-individual variations of seabird feeding ecology during moult. Mar Biol 156:1233–1240. doi:10.1007/s00227-0091165-6

    Article  Google Scholar 

  • Kaiser GW (1989) Nightly concentration of Bald Eagles at an auklet colony. Northwest Nat 70:12–13

    Google Scholar 

  • Kitaysky AS, Piatt JF, Wingfield JC (2007) Stress hormones link food availability and population processes in seabirds. Mar Ecol Prog Ser 352:245–258. doi:10.3354/meps07074

    Article  Google Scholar 

  • Kitaysky AS, Piatt JF, Hatch SA, Kitaiskaia EV, Benowitz Fredericks ZM, Shultz MT, Wingfield JC (2010) Food availability and population processes: severity of nutritional stress during reproduction predicts survival of long-lived seabirds. Funct Ecol 24:625–637. doi:10.1111/j.1365-2435.2009.01679.x

    Article  Google Scholar 

  • Kouwenberg A-L, Hipfner JM, McKay DW, Storey AE (2013) Corticosterone and stable isotopes in feathers predict egg size in Atlantic puffins Fratercula arctica. Ibis 155:413–418. doi:10.1111/ibi.12030

    Article  Google Scholar 

  • Kouwenberg A-L, McKay DW, Fitzsimmons MG, Storey AE (2015) Measuring corticosterone in feathers using an acetonitrile/hexane extraction and enzyme immunoassay: feather corticosterone levels of food-supplemented Atlantic Puffin chicks. J Field Ornithol 86:73–83. doi:10.1111/jofo.12090

    Article  Google Scholar 

  • Lattin CR, Reed JM, DesRochers DW, Romero LM (2011) Elevated corticosterone in feathers correlates with corticosterone-induced decreased feather quality: a validation study. J Avian Biol 42:247–252. doi:10.1111/j.1600048X.2010.05310.x

    Article  Google Scholar 

  • Legagneux P, Harms NJ, Gauthier G, Chastel O, Gilchrist GH, Bortolotti G, Bety J, Soos C (2013) Does feather corticosterone reflect individual quality or external stress in arctic-nesting migratory seabirds? PLoS ONE 12:e82644. doi:10.1371/journal.pone.0082644

    Article  Google Scholar 

  • Mackas DL, Batten S, Trudel M (2007) Effects on zooplankton of a warmer ocean: recent evidence from the Northeast Pacific. Prog Oceanogr 75:223–252. doi:10.1016/j.pocean.2007.08.010

    Article  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15. doi:10.1644/BHE-004.1

    Article  Google Scholar 

  • McFarlane-Tranquilla L, Ryder JL, Boyd WS, Shisko SG, Amey K, Bertram DF, Hipfner JM (2005) Diurnal marine distributions of radio-tagged Cassinís Auklets and Rhinoceros Auklets breeding at Triangle Island, B.C. Canadian Wildlife Service Technical Report Series 423, Environment Canada, Ottawa

  • Mendel CM (1989) The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev 10:232–274. doi:10.1210/edrv-10-3-232

    Article  CAS  Google Scholar 

  • Orians G, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Stairs GR, Mitchell RD (eds) Analysis of ecological systems. Ohio State University Press, Columbus, pp 155–177

    Google Scholar 

  • Pyle P (2008) Identification guide to North American birds. Part II: Anatidae to Alcidae, 1st edn. Slate Creek Press, Bolinas

    Google Scholar 

  • R CORE TEAM (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

    Google Scholar 

  • RStudio Team (2013) RStudio: Integrated development for R. RStudio Inc. Boston. http://www.rstudio.com

  • Rector ME, Kouwenberg A-L, Wilhelm SI, Robertson GJ, McKay DW, Fitzsimmons MG, Baker CR, McMillan-Cameron ML, Walsh CJ, Storey AE (2012) Corticosterone levels of Atlantic puffins vary with breeding stage and sex but are not elevated in poor foraging years. Gen Comp Endocrinol 178:408–416. doi:10.1016/j.ygcen.2012.06.008

    Article  CAS  Google Scholar 

  • Rich EL, Romero LM (2005) Exposure to chronic stress down regulates corticosterone responses to acute stressors. Am J Physiol Regul Integr Comp Physiol 288:R1628–R1636. doi:10.1152/ajpregu.00484.2004

    Article  CAS  Google Scholar 

  • Rodway MS, Lemon MJF (2011) Use of permanent plots to monitor trends in burrow nesting seabird populations in British Columbia. Mar Ornith 39:243–253

    Google Scholar 

  • Romero LM, Reed JM (2005) Collecting baseline corticosterone samples in the field: is under 3 min good enough? Comp Biochem Phys A 140:73–79. doi:10.1016/j.cbpb.2004.11.004

    Article  Google Scholar 

  • Romero LM, Reed JM, Wingfield JC (2000) Effects of weather on corticosterone responses in wild free-living passerine birds. Gen Comp Endocrinol 118:113–122. doi:10.1006/gcen.1999.7446

    Article  CAS  Google Scholar 

  • Satterthwaite WH, Kitaysky AS, Mangel M (2012) Linking climate variability, productivity and stress to demography in a long-lived seabird. Mar Ecol Prog Ser 454:221–235. doi:10.3354/meps09539

    Article  Google Scholar 

  • Schoech SJ, Romero LM, Moore IT, Bonier F (2013) Constraints, concerns and considerations about the necessity of estimating free glucocorticoid concentrations for field endocrine studies. Funct Ecol 27:1100–1106. doi:10.1111/1365-2435.12142

    Article  Google Scholar 

  • Sears J, Hatch SA, O’Brien DM (2009) Disentangling effects of growth and nutritional stress on seabird stable isotope ratios. Oecologia 159:41–48. doi:10.1007/s00442-008-1199-3

    Article  Google Scholar 

  • Sommerfield J, Kato A, Ropert-Coudert Y, Garthe S, Wilcox C, Hindell MA (2015) Flexible foraging behaviour in a marine predator, the Masked booby (Sula dactylatra), according to foraging locations and environmental conditions. J Mar Biol Ecol 463:79–86. doi:10.1016/j.jembe.2014.11.005

    Article  Google Scholar 

  • Sorensen MC, Hipfner JM, Kyser TK, Norris DR (2010) Pre-breeding diet influences ornament size in the rhinoceros auklet (Cerorhinca monocerata). Ibis 152:29–37. doi:10.1111/j.1474-919X.2009.00968.x

    Article  Google Scholar 

  • Thompson DR, Torres LG, Taylor GA, Rayner MJ, Sagar PM, Shaffer SA, Phillips RA, Bury SJ (2015) Stable isotope values delineate the non-breeding distributions of sooty shearwaters Puffinus griseus in the North Pacific Ocean. MEPS 521:277–282. doi:10.3354/meps11128

    Article  Google Scholar 

  • Will AP, Suzuki Y, Elliott KH, Hatch S, Watanuki Y, Kitaysky AS (2014) Feather corticosterone reveals developmental stress in seabirds. J Exp Biol 217:2371–2376. doi:10.1242/jeb.098533

    Article  CAS  Google Scholar 

  • Wingfield JC, Kitaysky AS (2002) Endocrine responses to unpredictable environmental events: stress or anti-stress hormones? Integr Comp Biol 42:600–609. doi:10.1093/icb/42.3.600

    Article  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to those who assisted with fieldwork, particularly Glen Keddie, who participated at all three study sites in all 3 years. We also thank Connie Smith of the Centre for Wildlife Ecology at Simon Fraser University for assistance with permits. Primary funding for fieldwork was provided by Environment Canada, along with logistical support from the Canadian Coast Guard. Additional funding was provided by NSERC (CGS-D, ALK; Discovery Grant, AES) and Memorial University of Newfoundland (ALK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy-Lee Kouwenberg.

Ethics declarations

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Responsible Editor: V. H. Paiva.

Reviewed by A. C. Norte and undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouwenberg, AL., Hipfner, J.M., McKay, D.W. et al. Corticosterone levels in feathers and blood of rhinoceros auklets Cerorhinca monocerata are affected by variation in environmental conditions. Mar Biol 163, 42 (2016). https://doi.org/10.1007/s00227-016-2817-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2817-y

Keywords

Navigation