Skip to main content

Advertisement

Log in

Spatial synchrony of amphipods in giant kelp forests

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Amphipods are abundant in marine ecosystems worldwide and are important as prey and as consumers of macrophytes and detritus in food webs. Due to the spatially complex and dynamic nature of giant kelp (Macrocystis pyrifera) forests, assessment of the abundances of giant kelp and amphipods through time and space should provide insight into their potential interactions within the system. In an extensive field study within the surface canopy of giant kelp, the abundance of amphipods was quantified on artificial substrates at an array of 18 sites within kelp forests along Point Loma, California, USA, from July to October 2009 and 2010. Biomass of giant kelp canopy was estimated using remotely sensed imagery, and the spatial synchrony (autocorrelation through time) of kelp canopy was compared with synchrony of caprellid and non-caprellid amphipods. Caprellids exhibited high spatial synchrony that did not decrease with distance, while non-caprellids were synchronous on local scales, indicating high spatial heterogeneity in abundance through time. Gammarids showed a rapid exponential decrease in synchrony within the first 550 m that was consistent with synchrony of giant kelp. This suggests a local-scale biotic link between non-caprellids and giant kelp canopy, whereas caprellid synchrony is more likely to be influenced by regional-scale environmental variables. Caprellids and other amphipods are important prey resources for common kelp forest fishes, so these differences may in turn affect the spatial distributions of these predators. Moreover, excretion by amphipods may be an important source of nitrogen to giant kelp during periods of nitrogen limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson T (1994) Role of macroalgal structure in the distribution and abundance of a temperate reef fish. Mar Ecol Prog Ser 113:279–290. doi:10.3354/meps113279

    Article  Google Scholar 

  • Bell TW, Cavanaugh KC, Reed DC, Siegel DA (2015) Geographical variability in the controls of giant kelp biomass dynamics. J Biogeogr 42:2010–2021. doi:10.1111/jbi.12550

    Article  Google Scholar 

  • Bjørnstad ON, Ims RA, Lambin X (1999) Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol Evol 14:427–432

    Article  Google Scholar 

  • Bray RN, Ebeling AW (1975) Food, activity, and habitat of three picker-type microcarnivorous fishes in the kelp forests off Santa Barbara, California. Fish Bull 73:815–829

    Google Scholar 

  • Buonaccorsi JP, Elkinton JS, Evans SR, Liebhold AM (2001) Measuring and testing for spatial synchrony. Ecology 82:1668–1679

    Article  Google Scholar 

  • Burkepile DE, Allgeier JE, Shantz AA, Pritchard CE, Lemoine NP, Bhatti LH, Layman CA (2013) Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Sci Rep 3:1493. doi:10.1038/srep01493

    Article  CAS  Google Scholar 

  • Caine EA (1977) Feeding mechanisms and possible resource partitioning of the Caprellidae (Crustacea: Amphipoda) from Puget Sound, USA. Mar Biol 42:331–336

    Article  Google Scholar 

  • Caine EA (1979) Functions of swimming setae within caprellid amphipods (Crustacea). Biol Bull 156:169–178

    Article  Google Scholar 

  • Caine EA (1980) Ecology of two littoral species of caprellid amphipods (Crustacea) from Washington, USA. Mar Biol 56:327–335

    Article  Google Scholar 

  • Caine EA (1991) Caprellid amphipods: fast food for the reproductively active. J Exp Mar Biol Ecol 148:27–33

    Article  Google Scholar 

  • Cavanaugh K, Siegel D, Reed D, Dennison P (2011) Environmental controls of giant-kelp biomass in the Santa Barbara Channel, California. Mar Ecol Prog Ser 429:1–17. doi:10.3354/meps09141

    Article  Google Scholar 

  • Cavanaugh KC, Kendall BE, Siegel DA, Reed DC, Alberto F, Assis J (2013) Synchrony in dynamics of giant kelp forests is driven by both local recruitment and regional environmental controls. Ecology 94:499–509

    Article  Google Scholar 

  • Cavanaugh KC, Siegel DA, Raimondi PT, Alberto F (2014) Patch definition in metapopulation analysis: a graph theory approach to solve the mega-patch problem. Ecology 95:316–328

    Article  Google Scholar 

  • Chapman JW (2007a) Amphipoda: chapter 39. The light and smith manual: intertidal invertebrates from central California to Oregon, 4th edn. University of California Press, California, pp 545–618

    Google Scholar 

  • Chapman MG (2007b) Colonization of novel habitat: tests of generality of patterns in a diverse invertebrate assemblage. J Exp Mar Biol Ecol 348:97–110. doi:10.1016/j.jembe.2007.04.010

    Article  Google Scholar 

  • Christie H, Norderhaug K, Fredriksen S (2009) Macrophytes as habitat for fauna. Mar Ecol Prog Ser 396:221–233. doi:10.3354/meps08351

    Article  Google Scholar 

  • Cole VJ, Chapman MG, Underwood AJ (2007) Landscapes and life-histories influence colonisation of polychaetes to intertidal biogenic habitats. J Exp Mar Biol Ecol 348:191–199. doi:10.1016/j.jembe.2007.05.001

    Article  Google Scholar 

  • Coyer JA (1979) The invertebrate assemblage associated with Macrocystis pyrifera and its utilization as a food resource by kelp forest fishes. Dissertation, University of Southern California

  • Coyer JA (1984) The invertebrate assemblage associated with the giant kelp, Macrocystis pyrifera, at Santa Catalina Island, California: a general description with emphasis on amphipods, copepods, mysids, and shrimps. Fish Bull 82:55–66

    Google Scholar 

  • Cruz-Rivera E, Hay ME (2000) The effects of diet mixing on consumer fitness: macroalgae, epiphytes, and animal matter as food for marine amphipods. Oecologia 123:252–264. doi:10.1007/s004420051012

    Article  Google Scholar 

  • Davenport AC, Anderson TW (2007) Positive indirect effects of reef fishes on kelp performance: the importance of mesograzers. Ecology 88:1548–1561

    Article  Google Scholar 

  • Dayton PK, Tegner MJ, Parnell PE, Edwards PB (1992) Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol Monogr 62:421–445

    Article  Google Scholar 

  • Duffy JE, Hay ME (2000) Strong impacts of grazing amphipods on the organization of a benthic community. Ecol Monogr 70:237–263

    Article  Google Scholar 

  • Eckman JE (1983) Hydrodynamic processes affecting benthic recruitment. Limnol Oceanogr 28:241–257

    Article  Google Scholar 

  • Edgar GJ (1992) Patterns of colonization of mobile epifauna in a Western Australian seagrass bed. J Exp Mar Biol Ecol 157:225–246

    Article  Google Scholar 

  • Edgar GJ, Klumpp DW (2003) Consistencies over regional scales in assemblages of mobile epifauna associated with natural and artificial plants of different shape. Aquat Bot 75:275–291. doi:10.1016/s0304-3770(02)00194-8

    Article  Google Scholar 

  • Edgar GJ, Robertson AI (1992) The influence of seagrass structure on the distribution and abundance of mobile epifauna: pattern and process in a Western Australian Amphibolis bed. J Exp Mar Biol 160:13–31

    Article  Google Scholar 

  • Eggleston DB, Elis WE, Etherington LL, Dahlgren CP, Posey MH (1999) Organism responses to habitat fragmentation and diversity: habitat colonization by estuarine macrofauna. J Exp Mar Biol 236:107–132

    Article  Google Scholar 

  • Farlin J, Lewis L, Anderson T, Lai C (2010) Functional diversity in amphipods revealed by stable isotopes in an eelgrass ecosystem. Mar Ecol Prog Ser 420:277–281. doi:10.3354/meps08873

    Article  Google Scholar 

  • Feary DA, Wellenreuther M, Clements KD (2009) Trophic ecology of New Zealand triplefin fishes (Family Tripterygiidae). Mar Biol 156:1703–1714. doi:10.1007/s00227-009-1205-2

    Article  Google Scholar 

  • Gaylord B et al (2007) Spatial patterns of flow and their modification within and around a giant kelp forest. Limnol Oceanogr 52:1838–1852

    Article  Google Scholar 

  • Graham MH (2002) Prolonged reproductive consequences of short-term biomass loss in seaweeds. Mar Biol 140:901–911. doi:10.1007/s00227-001-0761-x

    Article  Google Scholar 

  • Guerra-García JM, Tierno de Figueroa JM (2009) What do caprellids (Crustacea: Amphipoda) feed on? Mar Biol 156:1881–1890. doi:10.1007/s00227-009-1220-3

    Article  Google Scholar 

  • Guerra-Garcia JM, Corzo J, Garcia-Asencio I (2000) Seasonal fluctuations of Phtisica marina Slabber (Crustacea: Amphipoda: Caprellidea) in estuarine zone of southwest Spain. Pol Arch Hydrobiol 47:527–531

    Google Scholar 

  • Guerra-García JM, Ros M, Gordillo I, Cabezas MP, Baeza-Rojano E, Izquierdo D, Corzo J, Domínguez J, Varona S (2010) Distribution patterns of intertidal and shallow water caprellids associated with macroalgae along the Iberian Peninsula. Zoöl Baetica 21:101–129

    Google Scholar 

  • Hanisak MD (1983) The nitrogen relationships of marine macroalgae. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, pp 699–730

    Chapter  Google Scholar 

  • Hauser A, Attrill MJ, Cotton PA (2006) Effects of habitat complexity on the diversity and abundance of macrofauna colonising artificial kelp holdfasts. Mar Ecol Prog Ser 325:100

    Article  Google Scholar 

  • Hepburn C, Frew R, Hurd C (2012) Uptake and transport of nitrogen derived from sessile epifauna in the giant kelp Macrocystis pyrifera. Aquat Biol 14:121–128. doi:10.3354/ab00382

    Article  Google Scholar 

  • Holbrook SJ, Schmitt RJ (1986) Food acquisition by competing surfperch on a patchy environmental gradient. Environ Biol Fish 16:135–146

    Article  Google Scholar 

  • Hughes ARR, Bando KJ, Rodriguez LF, Williams SL (2004) Relative effects of grazers and nutrients on seagrasses: a meta-analysis approach. Mar Ecol Prog Ser 282:87–99

  • Jessen MP (1969) The ecology and taxonomy of the Caprellidae (order, Amphipoda-suborder, Caprellidea) of the Coos Bay, Oregon, area. University of Minnesota

  • Kendall MM, Widdicombe S, Davey JJ, Somerfield PP, Austen MCV, Warwick RM (1996) The biogeography of islands: preliminary results from a comparative study of the isles of Scilly and Cornwall. J Mar Biol Assoc U K 76:219. doi:10.1017/s0025315400029155

    Article  Google Scholar 

  • Lagos NA, Tapia FJ, Navarrete SA, Castilla JC (2007) Spatial synchrony in the recruitment of intertidal invertebrates along the coast of central Chile. Mar Ecol Prog Ser 350:29–39. doi:10.3354/meps07105

    Article  Google Scholar 

  • Lewis LS, Anderson TW (2012) Top-down control of epifauna by fishes enhances seagrass production. Ecology 93:2746–2757

    Article  Google Scholar 

  • Lowry JK, Myers AA (2013) A phylogeny and classification of the Senticaudata subord. nov. (Crustacea: Amphipoda). Zootaxa 3610:1–80. doi:10.11646/zootaxa.3610.1.1

    Article  CAS  Google Scholar 

  • Mace AJ, Morgan SG (2006) Larval accumulation in the lee of a small headland: implications for the design of marine reserves. Mar Ecol Prog Ser 318:19–29

    Article  Google Scholar 

  • McCauley DJ et al (2015) Carbon stable isotopes suggest that hippopotamus-vectored nutrients subsidize aquatic consumers in an East African river. Ecosphere 6. doi:10.1890/ES14-00514.1

  • McCurdy DG, Forbes MR (2005) Foraging and impacts by benthic fish on the intertidal amphipod Corophium volutator. J Crustacean Biol 25:558–564

    Article  Google Scholar 

  • Menge BA, Chan F, Nielsen KJ, Di Lorenzo E, Lubchenco J (2009) Climatic variation alters supply-side ecology: impact of climate patterns on phytoplankton and mussel recruitment. Ecol Monogr 79:379–395

    Article  Google Scholar 

  • Moore SE, Grebmeier JM, Davies JR (2003) Gray whale distribution relative to forage habitat in the northern Bering Sea: current conditions and retrospective summary. Can J Zool 81:734–742. doi:10.1139/Z03-043

    Article  Google Scholar 

  • Moran PAP (1953) The statistical analysis of the Canadian lynx cycle. Aust J Zool 1:291–298

    Article  Google Scholar 

  • Morton D, Anderson T (2013) Spatial patterns of invertebrate settlement in giant kelp forests. Mar Ecol Prog Ser 485:75–89. doi:10.3354/meps10329

    Article  Google Scholar 

  • Nakaoka M, Toyohara T, Matsumasa M (2001) Seasonal and between-substrate variation in mobile epifaunal community in a multispecific seagrass bed of Otsuchi Bay, Japan. Mar Ecol 22:379–395

    Article  Google Scholar 

  • North WJ, Zimmerman RC (1984) Influences of macronutrients and water temperatures on summertime survival of Macrocystis canopies. In: Eleventh international seaweed symposium, pp 419–424

  • Okamoto DK, Schmitt RJ, Holbrook SJ, Reed DC (2012) Fluctuations in food supply drive recruitment variation in a marine fish. Proc R Soc B 279:4542–4550. doi:10.1098/rspb.2012.1862

    Article  Google Scholar 

  • Page H, Dugan J, Schroeder D, Nishimoto M, Love M, Hoesterey J (2007) Trophic links and condition of a temperate reef fish: comparisons among offshore oil platform and natural reef habitats. Mar Ecol Prog Ser 344:245–256. doi:10.3354/meps06929

    Article  Google Scholar 

  • Pérez-Matus A, Shima J (2010) Density- and trait-mediated effects of fish predators on amphipod grazers: potential indirect benefits for the giant kelp Macrocystis pyrifera. Mar Ecol Prog Ser 417:151–158. doi:10.3354/meps08820

    Article  Google Scholar 

  • Poore AG (1994) Selective herbivory by amphipods inhabiting the brown alga Zonaria angustata. Mar Ecol Prog Ser 107:113–123

    Article  Google Scholar 

  • Poore AG (2004) Spatial associations among algae affect host use in a herbivorous marine amphipod. Oecologia 140:104–112

    Article  Google Scholar 

  • Poore AG (2005) Scales of dispersal among hosts in a herbivorous marine amphipod. Austral Ecol 30:219–228

    Article  Google Scholar 

  • Reed DC, Rassweiler A, Carr MH, Cavanaugh KC, Malone DP, Siegel DA (2011) Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests. Ecology 92:2108–2116

    Article  Google Scholar 

  • Regnault M (1987) Nitrogen excretion in marine and fresh-water crustacea. Biol Rev 62:1–24

    Article  Google Scholar 

  • Roberts DA, Poore AG (2006) Habitat configuration affects colonisation of epifauna in a marine algal bed. Biol Conserv 127:18–26. doi:10.1016/j.biocon.2005.07.010

    Article  Google Scholar 

  • Ronowicz M, Legeżyńska J, Kukliński P, Włodarska-Kowalczuk M (2013) Kelp forest as a habitat for mobile epifauna: case study of Caprella septentrionalis Kröyer, 1838 (Amphipoda, Caprellidae) in an Arctic glacial fjord. Polar Res. doi:10.3402/polar.v32i0.21037

    Google Scholar 

  • Rule MJ, Smith SD (2005) Spatial variation in the recruitment of benthic assemblages to artificial substrata. Mar Ecol Prog Ser 290:67–78

    Article  Google Scholar 

  • Saunders CG (1966) Dietary analysis of caprellids (Amphipoda). Crustaceana 10:314–316

    Article  Google Scholar 

  • Schneider DC, Harrington BA (1981) Timing of shorebird migration in relation to prey depletion. Auk 98:801–811

    Google Scholar 

  • Smith SD, Rule MJ (2002) Artificial substrata in a shallow sublittoral habitat: Do they adequately represent natural habitats or the local species pool? J Exp Mar Biol Ecol 277:25–41

    Article  Google Scholar 

  • Takeuchi I, Yamakawa H, Fujiwara M (1990) Density fluctuation of caprellid amphipods (Crustacea) inhabiting the red alga Gelidium amansii (Lamouroux) Lamouroux, with emphasis on Caprella okadai Arimoto. La Mer 28:36

    Google Scholar 

  • Taylor RB, Cole RG (1994) Mobile epifauna on subtidal brown seaweeds in northeastern New Zealand. Mar Ecol Prog Ser 115:271–282

    Article  Google Scholar 

  • Taylor R, Rees TAV (1998) Excretory products of mobile epifauna as a nitrogen source for seaweeds. Limnol Oceanogr 43:600–606

    Article  CAS  Google Scholar 

  • Thiel M, Guerra-García JM, Lancellotti DA, Vásquez N (2003) The distribution of littoral caprellids (Crustacea: Amphipoda: Caprellidea) along the Pacific coast of continental Chile. Rev Chil Hist Nat 76:297–312

    Google Scholar 

  • Thom R, Miller B, Kennedy M (1995) Temporal patterns of grazers and vegetation in a temperate seagrass system. Aquat Bot 50:201–205

    Article  Google Scholar 

  • Tilman D, Kareiva PM (1997) Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton

    Google Scholar 

  • Underwood AJ, Chapman MG (2006) Early development of subtidal macrofaunal assemblages: relationships to period and timing of colonization. J Exp Mar Biol Ecol 330:221–233

    Article  Google Scholar 

  • van Montfrans J, Wetzel RL, Orth RJ (1984) Epiphyte–grazer relationships in seagrass meadows: consequences for seagrass growth and production. Estuaries 7:289–309

    Article  Google Scholar 

  • Wagner HH, Fortin M-J (2005) Spatial analysis of landscapes: concepts and statistics. Ecology 86:1975–1987

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

  • Woods CM (2009) Caprellid amphipods: An overlooked marine finfish aquaculture resource? Aquaculture 289:199–211. doi:10.1016/j.aquaculture.2009.01.018

    Article  Google Scholar 

  • Zimmerman RC, Kremer JN (1984) Episodic nutrient supply to a kelp forest ecosystem in Southern California. J Mar Res 42:591–604. doi:10.1357/002224084788506031

    Article  Google Scholar 

Download references

Acknowledgments

We thank B. Hentschel, A. Kuris, and two anonymous reviewers for thoughtful comments on the manuscript, S. Gaines and K. Cavanaugh for statistical advice, and C. Gramlich for assistance in invertebrate taxonomy. We also thank J. Barr, M. Brett, J. Brower, M. Colvin, C. Jones, D. Hondolero, and S. Wheeler for field assistance in support of this project and SBC LTER for providing the Landsat data used in the study. We are grateful to many undergraduate volunteers for sorting amphipods, especially A. Bernabe, A. Evans, S. Grenier, I. Llamas, J. Mart, C. Mireles, and S. Waltz. This research was conducted in partial fulfillment of a master’s degree by D.N.M. and was funded in part by the San Diego State University Department of Biology Ecology Program and the California State University Council on Ocean Affairs, Science, and Technology. This is Contribution No. 48 of the Coastal and Marine Institute Laboratory, San Diego State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana N. Morton.

Additional information

Responsible Editor: G. Chapman.

Reviewed by undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morton, D.N., Bell, T.W. & Anderson, T.W. Spatial synchrony of amphipods in giant kelp forests. Mar Biol 163, 32 (2016). https://doi.org/10.1007/s00227-015-2807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-015-2807-5

Keywords

Navigation