Skip to main content
Log in

Particle processing and gut kinematics of planktotrophic bivalve larvae

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Although the clearance rates of planktotrophic bivalve larvae have been widely reported, post-oral particle processing is less well understood. Using a series of exposures to differently colored fluorescent polystyrene microbeads, we quantify several post-oral process in the larval gut, including gut fullness, gut passage time, and degree of mixing by modeling larval guts as a continuously stirred tank reactor (CSTR), plug flow reactor (PFR) or combinations of the two in series. We also varied several experimental conditions to understand how these affected estimates of gut kinematic parameters. We found the larval guts of M. galloprovincialis aged 2 and 7 days post-fertilization, had gut exchange time >1 h and were best described either as a CSTR or CSTR in series with a PFR. Mixing stomach contents likely aids post-oral particle selection, physical breakdown of ingested material, and accelerates the diffusion of digestive enzymes in the gut volume. Reactor models also provided estimates of ingestion rates, which were compared to those obtained by other authors who measured rates of bead accumulation. In accordance with reactor theory, ingestion rates were negatively and nonlinearly correlated with gut passage times and positively related to maximal gut fullness. Collectively, these studies provide new insight on the digestive strategy of planktotrophic bivalve larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budepest, pp 267–281

    Google Scholar 

  • Almeda R, Messmer AM, Sampedro N, Gosselin LA (2011) Feeding rates and abundance of marine invertebrate planktonic larvae under harmful algal bloom conditions off Vancouver Island. Harmful Algae 10:194–206. doi:10.1016/j.hal.2010.09.007

    Article  Google Scholar 

  • Armengol X, Boronat L, Camacho A, Wurtsbaugh WA (2001) Grazing by a dominant rotifer Conochilus unicornis Rousselet in a mountain lake: in situ measurements with synthetic microspheres. Hydrobiologia 446/447:107–114

    Article  Google Scholar 

  • Baldwin BS (1995) Selective particle ingestion by oyster larvae (Crassostrea virginica) feeding on natural seston and cultured algae. Mar Biol 123:95–107

    Article  Google Scholar 

  • Baldwin BS, Newell RIE (1991) Omnivorous feeding by planktotrophic larvae of the eastern oyster Crassostrea virginica. Mar Ecol Prog Ser 78:285–301

    Article  Google Scholar 

  • Baldwin BS, Newell RIE (1995a) Feeding rate responses of oyster larvae (Crassostrea virginica) to seston quantity and composition. J Exp Mar Biol Ecol 189:77–91

    Article  Google Scholar 

  • Baldwin BS, Newell RIE (1995b) Relative importance of different size food particles in the natural diet of oyster larvae Crassostrea virginica. Mar Ecol Prog Ser 120:135–145

    Article  Google Scholar 

  • Bayne BL (1965) Growth and the delay of metamorphosis of the larvae of Mytilus edulis (L.). Ophelia 2:1–47

    Article  Google Scholar 

  • Bayne BL (1972) Some effects of stress in the adult on the larval development Mytilus edulis. Nature 237:459

    Article  CAS  Google Scholar 

  • Bertram DF, Strathmann RR (1998) Effects of maternal and larval nutrition on growth and form of planktotrophic larvae. Ecology 79:315–327. doi:10.2307/176885

    Article  Google Scholar 

  • Brillant MGS, MacDonald BA (2000) Postingestive selection in the sea scallop, Placopecten magellanicus (Gmelin): the role of particle size and density. J Exp Mar Biol Ecol 253:211–227

    Article  Google Scholar 

  • Brillant MGS, MacDonald BA (2002) Postingestive selection in the sea scallop (Placopecten magellanicus) on the basis of chemical properties of particles. Mar Biol 141:457–465

    Article  CAS  Google Scholar 

  • Brillant MGS, MacDonald BA (2003) Postingestive sorting of living and heat-killed Chlorella within the sea scallop, Placopecten magellanicus (Gmelin). J Exp Mar Biol Ecol 290:81–91

    Article  Google Scholar 

  • Chen M, Liu H, Song S, Sun J (2015) Size-fractionated mesozooplankton biomass and grazing impact on phytoplankton in northern South China Sea during four seasons. Deep Sea Res Part II Top Stud Oceanogr. doi:10.1016/j.dsr2.2015.02.026

    Google Scholar 

  • Cranford PJ, Emerson CW, Hargrave BT, Milligan TG (1998) In situ feeding and absorption responses of sea scallops Placopecten magellanicus (Gmelin) to storm-induced changes in the quantity and composition of the seston. J Exp Mar Biol Ecol 219:45–70

    Article  Google Scholar 

  • Croxton AN, Wikfors GH, Schulterbrandt-Gragg RD (2012) Immunomodulation in eastern oysters, Crassostrea virginica, exposed to a PAH-contaminated, microphytobenthic diatom. Aquat Toxicol 118–119:27–36. doi:10.1016/j.aquatox.2012.02.023

    Article  Google Scholar 

  • Dadd RH (1971) Effects of size and concentration of particles on rates of ingestion of latex particulates by mosquito larvae. Ann Entomol Soc Am 64:687–692

    Article  Google Scholar 

  • Dagg MJ, Walser WE Jr (1987) Ingestion, gut passage, and egestion by the copepod Neocalanus plumchrus in the laboratory and in the subarctic Pacific Ocean. Limnol Oceanogr 32:178–188

    Article  CAS  Google Scholar 

  • Dam HG, Peterson WT (1988) The effect of temperature on the gut clearance rate constant of planktonic copepods. J Exp Mar Biol Ecol 123:1–14

    Article  Google Scholar 

  • Defossez JM, Hawkins AJS (1997) Selective feeding in shellfish: size-dependent rejection of large particles within pseudofaeces from Mytilus edulis, Ruditapes philippinarum and Tapes decussatus. Mar Biol 129:139–147

    Article  Google Scholar 

  • DeMott WR (1988) Discrimination between algae and artificial particles by freshwater and marine copepods. Limnol Oceanogr 33:397–408

    Article  Google Scholar 

  • Gerdes D (1983) The Pacific oyster Crassostrea gigas: part I. Feeding behavior of larvae and adults. Aquaculture 31:195–219. doi:10.1016/0044-8486(83)90313-7

    Article  Google Scholar 

  • Hart MW (1991) Particle captures and the method of suspension feeding by echinoderm larvae. Biol Bull 180:12–27

    Article  Google Scholar 

  • Hawkins AJS, Bayne BL, Mantoura RFC et al (1986) Chlorophyll degradation and absorption throughout the digestive system of the blue mussel Mytilus edulis L. J Exp Mar Biol Ecol 96:213–223. doi:10.1016/0022-0981(86)90204-2

    Article  CAS  Google Scholar 

  • Hawkins AJS, Navarro E, Iglesias JIP (1990) Comparative allometries of gut-passage time, gut content and metabolic faecal loss in Mytilus edulis and Cerastoderma edule. Mar Biol 105:197–204. doi:10.1007/BF01344287

    Article  Google Scholar 

  • Ibarrola I, Larretxea X, Iglesias JIP, Urrutia MB, Navarro E (1998) Seasonal variation of digestive enzyme activities in the digestive gland and the crystalline style of the common cockle Cerastoderma edule. Comp Biochem Physiol A 121:25–34. doi:10.1016/S1095-6433(98)10097-1

    Article  Google Scholar 

  • Jeong HJ, Song JY, Lee CH, Kim ST (2004) Feeding by larvae of the mussel Mytilus galloprovincialis on red-tide dinoflagellates. J Shellfish Res 23:185–196

    Google Scholar 

  • Jumars PA (2000) Animal guts as ideal chemical reactors: maximizing absorption rates. Am Nat 155:527–543. doi:10.1086/303333

    Article  Google Scholar 

  • Jumars PA, Penry DL (1989) Digestion theory applied to deposit feeding. Ecology of marine deposit feeders. Springer, New York, pp 114–128

    Chapter  Google Scholar 

  • Jumars PA, Penry DL, Baross JA et al (1989) Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep Sea Res Part Oceanogr Res Pap 36:483–495

    Article  CAS  Google Scholar 

  • Kaposi KL, Mos B, Kelaher BP, Dworjanyn SA (2014) Ingestion of microplastic has limited impact on a marine larva. Environ Sci Technol 48:1638–1645. doi:10.1021/es404295e

    Article  CAS  Google Scholar 

  • Karasov WH, Martínez del Rio C, Caviedes-Vidal E (2011) Ecological physiology of diet and digestive systems. Annu Rev Physiol 73:69–93. doi:10.1146/annurev-physiol-012110-142152

    Article  CAS  Google Scholar 

  • Kiørboe T, Møhlenberg F, Nicolajsen H (1982) Ingestion rate and gut clearance in the planktonic copepod Centropages hamatus (Lilljeborg) in relation to food concentration and temperature. Ophelia 21:181–194

    Article  Google Scholar 

  • López-Urrutia Á, Irigoien X, Acuña JL, Harris R (2003) In situ feeding physiology and grazing impact of the appendicularian community in temperate waters. Mar Ecol Prog Ser 252:125–141

    Article  Google Scholar 

  • Mackintosh NA (1925) Memoirs: the crystalline style in gastropods. Q J Microsc Sci 2:317–342

    Google Scholar 

  • Mayzaud P, Tirelli V, Bernard JM, Roche-Mayzaud O (1998) The influence of food quality on the nutritional acclimation of the copepod Acartia clausi. J Mar Syst 15:483–493

    Article  Google Scholar 

  • Milke LM, Ward JE (2003) Influence of diet on pre-ingestive particle processing in bivalves: II. Residence time in the pallial cavity and handling time on the labial palps. J Exp Mar Biol Ecol 293:151–172. doi:10.1016/S0022-0981(03)00217-X

    Article  Google Scholar 

  • Millar RH (1955) Notes on the mechanism of food movement in the gut of the larval oyster, Ostrea edulis. Q J Microsc Sci 3:539–544

    Google Scholar 

  • Morton JE (1952) The role of the crystalline style. J Molluscan Stud 29:85–92

    Google Scholar 

  • Nelson PR, Wludyka PS, Copeland KA (2005) The analysis of means: a graphical method for comparing means, rates, and proportions. Series on statistics and applied probability. SIAM, Philadelphia, PA

    Book  Google Scholar 

  • Newell RIE, Langdon CJ (1996) Mechanisms and physiology of larval and adult feeding. The eastern oyster. Maryland Seagrant, Maryland

    Google Scholar 

  • Pace ML, Bailiff MD (1987) Evaluation of a fluorescent microsphere technique for measuring grazing rates of phagotrophic microorganisms. Mar Ecol Prog Ser 40:185–193

    Article  Google Scholar 

  • Paffenhöfer GA, Van Sant KB (1985) The feeding response of a marine planktonic copepod to quantity and quality of particles. Mar Ecol Prog Ser 27:55–65

    Article  Google Scholar 

  • Penry DL (2000) Digestive kinematics of suspension-feeding bivalves: modeling and measuring particle-processing in the gut of Potamocorbula amurensis. Mar Ecol Prog Ser 197:181–192

    Article  Google Scholar 

  • Penry DL, Frost BW (1990) Re-evaluation of the gut-fullness (gut fluorescence) method for inferring ingestion rates of suspension-feeding copepods. Limnol Oceanogr 35:1207–1214

    Article  Google Scholar 

  • Penry DL, Frost BW (1991) Chlorophyll a degradation by Calanus pacificus: dependence on ingestion rate and digestive acclimation to food resources. Limnol Oceanogr 36:147–158

    Article  Google Scholar 

  • Penry DL, Jumars PA (1986) Chemical reactor analysis and optimal digestion. Bioscience 36:310–315. doi:10.2307/1310235

    Article  CAS  Google Scholar 

  • Penry DL, Jumars PA (1987) Modeling animal guts as chemical reactors. Am Nat 129:69–96. doi:10.2307/2461965

    Article  CAS  Google Scholar 

  • Phibbs FD (1969) Laboratory hatching and rearing of pacific coast clams and oysters. US Department of Interior; Fish and Wildlife Service

  • Reinfelder JR, Fisher NS (1994) The assimilation of elements ingested by marine planktonic bivalve larvae. Limnol Oceanogr 39:12–20

    Article  CAS  Google Scholar 

  • Rico-Villa B, Pouvreau S, Robert R (2009) Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture 287:395–401

    Article  Google Scholar 

  • Riisgard HU, Randløv A, Kristensen PS (1980) Rates of water processing, oxygen consumption and efficiency of particle retention in veligers and young post-metamorphic Mytilus edulis. Ophelia 19:37–46

    Article  Google Scholar 

  • Seebaugh DR, L’Amoreaux WJ, Wallace WG (2011) Digestive toxicity in grass shrimp collected along an impact gradient. Aquat Toxicol 105:609–617. doi:10.1016/j.aquatox.2011.08.015

    Article  CAS  Google Scholar 

  • Solow AR, Gallager SM (1990) Analysis of capture efficiency in suspension feeding: application of nonparametric binary regression. Mar Biol 107:341–344. doi:10.1007/BF01319834

    Article  Google Scholar 

  • Sprung M (1984) Physiological energetics of mussel larvae (Mytilus edulis). II. Food uptake. Mar Ecol Prog Ser 17:295–305

    Article  Google Scholar 

  • Sutherland KR, Madin LP, Stocker R (2010) Filtration of submicrometer particles by pelagic tunicates. Proc Natl Acad Sci 107:15129–15134. doi:10.1073/pnas.1003599107

    Article  CAS  Google Scholar 

  • Thompson PA, Montagnes DJ, Shaw BA, Harrison PJ (1994) The influence of three algal filtrates on the grazing rate of larval oysters (Crassostrea gigas), determined by fluorescent microspheres. Aquaculture 119:237–247

    Article  Google Scholar 

  • Tirelli V, Mayzaud P (2005) Relationship between functional response and gut transit time in the calanoid copepod Acartia clausi: role of food quantity and quality. J Plankton Res 27:557–568. doi:10.1093/plankt/fbi031

    Article  Google Scholar 

  • Wang R, Conover RJ (1986) Dynamics of gut pigment in the copepod Temora longicornis and the determination of in situ grazing rates. Limnol Oceanogr 31:867–877

    Article  Google Scholar 

  • Wang W-X, Fisher NS (1996) Assimilation of trace elements and carbon by the mussel Mytilus edulis: effects of food composition. Limnol Oceanogr 41:197–207

    Article  CAS  Google Scholar 

  • Wang W-X, Fisher NS (1999) Assimilation efficiencies of chemical contaminants in aquatic invertebrates: a synthesis. Environ Toxicol Chem 18:2034–2045

    Article  CAS  Google Scholar 

  • Ward JE, Kach DJ (2009) Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar Environ Res 68:137–142

    Article  CAS  Google Scholar 

  • Ward JE, Shumway SE (2004) Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. J Exp Mar Biol Ecol 300:83–130. doi:10.1016/j.jembe.2004.03.002

    Article  Google Scholar 

  • Widdows J (1991) Physiological ecology of mussel larvae. Aquaculture 94:147–163

    Article  Google Scholar 

  • Widdows J, Newell R, Mann R (1989) Effects of hypoxia and anoxia on survival, energy metabolism, and feeding of oyster larvae (Crassostrea virginica, Gmelin). Biol Bull 177:154–166

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Thaddaeus Buser for helping to count beads and Javan Bailey and Greg Hutchinson of the Molluscan Broodstock Program, Oregon State University, for supplying technical and infrastructural support during studies. RIE Newell, R Mann, and PA Jumars provided insightful comments that greatly improved the manuscript. Funding of this project was through an award from the Markham Scholarship Fund, Hatfield Marine Science Center, and National Science Foundation Grant OCE CRI-OA 1041267. The authors also gratefully acknowledge travel support funded by a research grant from Norwich University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Gray.

Ethics declarations

Disclosure statement

The authors are unaware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this manuscript.

Additional information

Responsible Editor: X. Irigoyen.

Reviewed by P. A. Jumars and R. Mann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gray, M.W., Kramer, S. & Langdon, C. Particle processing and gut kinematics of planktotrophic bivalve larvae. Mar Biol 162, 2187–2201 (2015). https://doi.org/10.1007/s00227-015-2746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2746-1

Keywords

Navigation