Skip to main content

Advertisement

Log in

Robustness of Paracentrotus lividus larval and post-larval development to pH levels projected for the turn of the century

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Ocean acidification is causing changes to the chemistry and biology of the marine environment, in ways that we are only just beginning to understand. Growing evidences demonstrate that ocean acidification can influence the survival, growth, development, and physiology of marine invertebrates. Here, we assessed the impact of ocean acidification on the sea urchin Paracentrotus lividus larval development (from embryos exposed to experimental conditions from the 24 h gastrula stage to 35 days) and settlement. Samples were collected from the Canary Islands (28°24′N, 16°18′W) in March 2012. Three pH treatments were tested: (1) pH 8.1, the present average pH; (2) pH 7.7, the average predicted for the year 2100, but already experienced in the natural environment during extremes of variability; and (3) pH 7.4, predicted extremes of natural variability by 2100. The mortality rate was significantly increased by 40 % at the lowest pH. Time required by larvae to achieve each developmental stage (from gastrula to competent stage) was decreased at pH 7.7 (larval development speed increased by 18 %), but larval morphology at a given size did not differ from the other pH treatments. Settlement was delayed by 8 days at pH 7.7 compared to pH 8.1, and no settlement was observed at pH 7.4. Overall, only sublethal effects were observed in larvae exposed to pH 7.7, while pH 7.4 induced both lethal and sublethal effects. Our results support the hypothesis that P. lividus is robust to survive in an environment with the present natural variation. However, the species is sensitive to extreme levels of pH that are predicted within the next 90 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albright R, Langdon D (2011) Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites asteroides. Glob Change Biol 17:2478–2487

    Article  Google Scholar 

  • Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Natl Acad Sci USA 107:20400–20404

    Article  CAS  Google Scholar 

  • Boudouresque CF, Verlaque M (2001) Ecology of Paracentrotus lividus. In: Lawrence JM (ed) Edible sea urchins: biology and ecology, vol 32. Elsevier Science, Amsterdam, pp 177–216

    Chapter  Google Scholar 

  • Byrne M, Prowse T, Sewell MA, Dworjanyn SA, Williamson JE, Vaïtilingon D (2008) Maternal provisioning for larvae and larval provisioning for juveniles in the toxopneustid sea urchin Tripneustes gratilla. Mar Biol 155:473–482

    Article  Google Scholar 

  • Byrne M, Ho MA, Wong E et al (2011) Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proc Soc Lond B Bio 278:2376–2383

    Article  Google Scholar 

  • Byrne M, Lamare M, Winter D, Dworjanyn SA, Uthicke S (2013) The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Philos Trans Roy Soc B 368:20120439

    Article  Google Scholar 

  • Cameron RA, Hinegardner R (1974) Initiation of metamorphosis in laboratory-cultured sea urchins. Biol Bull 146:335–342

    Article  CAS  Google Scholar 

  • Chan KYK, Grünbaum D, O’Donnell MJ (2011) Effects of ocean-acidification induced morphological changes on larval swimming and feeding. J Exp Biol 214:3857–3867

    Article  Google Scholar 

  • Clark D, Lamare M, Barker M (2009) Response of sea urchin pluteus larvae (Echinodermata: echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Mar Biol 156:1125–1137

    Article  Google Scholar 

  • Cohen-Rengifo M, García E, Hernández CA, Hernández JC, Clemente S (2013) Global warming and ocean acidification affect fertilization and early development of the sea urchin Paracentrotus lividus. Cah Biol Mar 54:667–675

    Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743

    Article  CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR et al (2007) Guide to best practices for ocean CO2 measurements. PICES Spec Publ 3:191

    Google Scholar 

  • Dorey N (2013) Trans-life cycle impacts of Ocean Acidification on the Green Sea Urchin Strongylocentrotus droebachiensis. Doctoral thesis, University of Gothenburg

  • Dorey N, Lancon P, Thorndyke MC, Dupont S (2013) Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Glob Change Biol. doi:10.1111/gcb.12276

    Google Scholar 

  • Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby PJ (2012) Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol Lett 15:338–346

    Article  Google Scholar 

  • Dupont S, Pörtner H (2013) Get ready for ocean acidification. Nature 498:429

    Article  CAS  Google Scholar 

  • Dupont S, Thorndyke M (2013) Direct impacts of near-future ocean acidification on sea urchins. In: Fernández-Palacios JM, de Nasciemiento L, Hernández JC, Clemente S, González A, Díaz-González JP (eds) Climate change perspectives from the atlantic: past, present and future. Servicio de publicaciones de La Universidad de La Laguna, La Laguna

    Google Scholar 

  • Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294

    Article  CAS  Google Scholar 

  • Dupont S, Dorey N, Thorndyke M (2010a) What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuar Coast Shelf Sci 89:182–185

    Article  Google Scholar 

  • Dupont S, Ortega-Martínez O, Thorndyke M (2010b) Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19:449–462

    Article  CAS  Google Scholar 

  • Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke MC (2013) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 160:1835–1843

    Article  CAS  Google Scholar 

  • Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola JM, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 101:4115–4128

    Article  CAS  Google Scholar 

  • Fenaux L, Strathmann MF, Strathmann RR (1994) Five tests of food- limited growth of larvae in coastal waters by comparisons of rates of development and form of echinoplutei. Limnol Oceanogr 39(1):84–98

    Article  Google Scholar 

  • Gattuso JP, Hansson L (2011) Ocean acidification: background and history. In: Gattuso JP, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 1–20

    Google Scholar 

  • Gianguzza P, Visconti G, Gianguzza F, Sarà G, Dupont S (2014) Temperature modulates the response of the thermophile sea urchin Arbacia lixula early life stages to CO2-driven acidification. Mar Environ Res 93:70–77

    Article  CAS  Google Scholar 

  • Girard D, Herrero A, Mora J, Hernández J, Brito A, González N, Catoire JL (2008) Reproductive cycle of the echinoid Paracentrotus lividus (Lamarck, 1816) in its southern population limit (Canary Islands eastern Atlantic). Gulf Mex Sci 26(2):149

    Google Scholar 

  • Girard D, Clemente S, Toledo-Guedes K, Brito A, Hernández JC (2012) A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: analysis of potential links with environmental conditions. Mar Ecol 33:377–385

    Article  Google Scholar 

  • González-Bernat MJ, Lamare M, Uthicke S, Byrne M (2013) Fertilisation, embryogenesis and larval development in the tropical intertidal sand dollar Arachnoides placenta in response to reduced seawater pH. Mar Biol 160:1927–1941

    Article  Google Scholar 

  • Gosselin P, Jangoux M (1996) Induction of metamorphosis in Paracentrotus lividus larvae (Echinodermata, Echinoidea). Oceano Acta 19(3–4):293–296

    Google Scholar 

  • Gosselin P, Jangoux M (1998) From competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinodermata, Echinoidea). Zoomorphology 118:31–43

    Article  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Hereu B, Zabala M, Linares C, Sala E (2005) The effects of predator abundance and habitat structural complexity on survival of juvenile sea urchins. Mar Biol 146:293–299

    Article  Google Scholar 

  • Hernández JC, Clemente S, Tuya F, Pérez-Ruzafa A, Sangil C, Moro-Abad L, Bacallado-Aránega J (2013) Echinoderms of the Canary Islands, Spain. In: Alvarado JJ, Solís F (eds) Echinoderms research and diversity in latin America. Springer, Berlin, pp 471–510

    Chapter  Google Scholar 

  • Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A et al (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6:12

    Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V,  Midgley PM (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535

  • Ledireac’h JP (1987) La pêche des oursins en Méditerranée: historique, techniques, législation, production. In: Boudoresque CF (ed) Colloque international sur Paracentrotus lividus et les oursins comestibles. GIS Posidonie Publ, Marseille, pp 335–362

    Google Scholar 

  • Lewis E, Wallace D (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge

  • López S, Turon X, Montero E, Palacín C, Duarte CM, Tarjuelo I (1998) Larval abundance, recruitment and early mortality in Paracentrotus lividus (Echinoidea). Interannual variability and plankton-benthos coupling. Mar Ecol Prog Ser 172:239–251

    Article  Google Scholar 

  • Martin S, Richier S, Pedrotti MZ, Dupont S, Castejon C, Gerakis Y, Kerros ME, Oberhänsli F et al (2011) Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J Exp Biol 214:1357–1368

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuc M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

    Article  CAS  Google Scholar 

  • Morgan SG (1995) Life and death in the plankton: larval mortality and adaptation. In: McEdward L (ed) Ecology of marine invertebrate larvae, vol 1. CRC Press, Boca Raton

    Google Scholar 

  • Moulin L, Catarino A, Claessens T, Dubois P (2010) Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck, 1816). Mar Pollut Bull 62:48–54

    Article  Google Scholar 

  • O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci USA 104:1266–1271

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  Google Scholar 

  • Rasband WS (1997-2012) ImageJ. US National Institutes of Health, Bethesda, Maryland USA. http://imagej.nih.gov/ij/

  • Sheppard-Brennand H, Soars N, Dworjanyn S, Davis A, Byrne M (2010) Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS One 5:e11372

    Article  Google Scholar 

  • Strathmann MF (1987) Reproduction and development of marine invertebrates of the Northern coast. University of Washington Press, Seattle

    Google Scholar 

  • Stumpp M, Dupont S, Thorndyke MC, Melzner F (2011) CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae. Comp Biochem Phys A 160(3):320–330

    Article  CAS  Google Scholar 

  • Stumpp M, Hu MY, Melzner F, Gutowska MA, Dorey N, Himmerkus N, Hotmann WC, Dupont ST, Thorndyke MC, Bleich M (2012) Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc Natl Acad Sci USA 189:18192–18197

    Article  Google Scholar 

  • Stumpp M, Hu MY, Casties I, Saborowski R, Bleich M, Melzner F, Dupont S (2013) Digestion in sea urchin larvae impaired under ocean acidification. Nat clim change 3:1044–1049. doi:10.1038/NCLIMATE2028

    Article  CAS  Google Scholar 

  • Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25(1):1–45

    Article  CAS  Google Scholar 

  • Tomas F, Turon X, Romero J (2006) Differential element assimilation by sea urchins Paracentrotus lividus in seagrass beds: implications for trophic interactions. Mar Ecol Prog Ser 306:125–131

    Article  Google Scholar 

  • Vaughn D, Allen JD (2010) The Peril of the plankton. Integr Comp Biol 50(4):552–570

    Article  Google Scholar 

  • Wangensteen O, Dupont S, Casties I, Turon X, Palacín C (2013) Some like it hot: temperature and acidification modulate larval development and settlement of the sea urchin Arbacia lixula. J Exp Mar Biol Ecol 449:304–311

    Article  Google Scholar 

  • Webster NS, Uthicke S, Botté ES, Flores F, Negri AP (2013) Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob Change Biol 19:303–315

    Article  Google Scholar 

  • Wittmann A, Pörtner HO (2013) Sensitivities of extant animal taxa to ocean acidification. Nat Clim Change 3:995–1001. doi:10.1038/NCLIMATE1982

    Article  CAS  Google Scholar 

  • Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci USA 105(48):18848–18853

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was carried out within the framework of the Project “ACIDROCK” CTM2010_21724 (subprogram MAR) of the Spanish “Ministerio de Ciencia e Innovación.” The authors would like to thank the “Spanish Oceanography Institute” and PhD students José Carlos Mendoza and Cataisa López, for their collaboration during the experiments. S.D. was financially supported by the Linnaeus Centre for Marine Evolutionary Biology at the University of Gothenburg (http://www.cemeb.science.gu.se/) and a Linnaeus Grant from the Swedish Research Councils VR and Formas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseba García.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Experiments comply with the current Spanish laws.

Additional information

Responsible Editor: M. Byrne.

Reviewed by undisclosed experts.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, E., Hernández, J.C., Clemente, S. et al. Robustness of Paracentrotus lividus larval and post-larval development to pH levels projected for the turn of the century. Mar Biol 162, 2047–2055 (2015). https://doi.org/10.1007/s00227-015-2731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2731-8

Keywords

Navigation