Skip to main content

Advertisement

Log in

Effect of simulated tidal currents on the burrow emergence rhythms of the Norway lobster (Nephrops norvegicus)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Light is the most important zeitgeber for the synchronization of biological rhythms in terrestrial organisms. In the sea, the light intensity progressively decreases, and tidal currents might control behavioural rhythms at disphotic depths. The Norway lobster, Nephrops norvegicus, is distributed from the upper shelf to middle slope areas. Its burrowing behaviour is under the control of a circadian system, and the effects of tidal currents have been inferred from catchability patterns. Male lobsters were collected from 100 m depth off the Ebro Delta, Tarragona, Spain (40° 39′N, 1° 13′E). Light intensity and water current cycles were simulated in the laboratory to investigate their combined effects on burrow emergence behavioural rhythms (June–July 2012). Periodic water currents (10 cm s−1) inhibited N. norvegicus burrow emergence to a degree dependent on the relative phase between light and water current cycles. The lobsters preferred to remain inside the burrow in the presence of water currents. However, when they were outside the burrow, they spent more time orientated downstream during darkness hours. Moreover, four of the 15 lobsters showed that a current could act as a putative zeitgeber for the circadian oscillator, but further experiments are needed to confirm this finding. These results indicate that tidal current is an important parameter to consider when interpreting fishery-dependent data and data from video surveys, not only N. norvegicus, but for other deep-water epibenthic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguzzi J, Company JB (2010) Chronobiology of deep-water decapod crustaceans on continental margins. Adv Mar Biol 58:155–225. doi:10.1016/B978-0-12-381015-1.00003-4

    Article  Google Scholar 

  • Aguzzi J, Sardà F (2008) A history of recent advancements on Nephrops norvegicus behavioral and physiological rhythms. Rev Fish Biol Fish 18:235–248. doi:10.1007/s11160-007-9071-9

    Article  Google Scholar 

  • Aguzzi J, Sarriá D, García JA, Del Rio J, Sardà F, Manuel A (2008) A new tracking system for the measurement of diel locomotor rhythms in the Norway lobster, Nephrops norvegicus (L.). J Neurosci Methods 173:215–224. doi:10.1016/j.jneumeth.2008.06.009

    Article  Google Scholar 

  • Aguzzi J, Costa C, Furushima Y, Chiesa JJ, Menesatti P, Iwase R, Fujiwara Y (2010) Behavioral rhythms of hydrocarbon seep fauna in relation to internal tides. Mar Ecol Prog Ser 418:47–56

    Article  Google Scholar 

  • Aguzzi J, Company JB, Costa C, Menesatti P, Garcia JA, Bahamon N, Puig P, Sarda F (2011) Activity rhythms in the deep-sea: a chronobiological approach. Front Biosci (Landmark Ed) 16:131–150

    Article  Google Scholar 

  • Aguzzi J, Sbragaglia V, Tecchio S, Navarro J, Company JB (2015) Rhythmic behaviour of marine benthopelagic species and the synchronous dynamics of benthic communities. Deep Sea Res Pt I 95:1–11. doi:10.1016/j.dsr.2014.10.003

    Article  Google Scholar 

  • Arnold G (1981) Movements of fish in relation to water currents. In: Aidley D (ed) Animal migration. Cambridge University Press, Cambridge, pp 55–79

    Google Scholar 

  • Arnold GP, Walker MG, Emerson LS, Holford BH (1994) Movements of cod (Gadus morhua L.) in relation to the tidal streams in the southern North Sea. ICES J Mar Sci 51:207–232. doi:10.1006/jmsc.1994.1021

    Article  Google Scholar 

  • Atkinson RJA, Naylor E (1976) An endogenous activity rhythm and the rhythmicity of catches of Nephrops norvegicus (L). J Exp Mar Biol Ecol 25:95–108. doi:10.1016/0022-0981(76)90079-4

    Article  Google Scholar 

  • Bell MC, Redant F, Tuck I (2006) Nephrops Species. In: Phillips B (ed) Lobsters: biology, management, aquaculture and fisheries. Blackwell, Oxford, pp 412–461

    Chapter  Google Scholar 

  • Bell MC, Elson JM, Addison JT, Revill AS, Bevan D (2008) Trawl catch composition in relation to Norway lobster (Nephrops norvegicus L.) abundance on the Farn Deeps grounds, NE England. Fish Res 90:128–137. doi:10.1016/j.fishres.2007.10.003

    Article  Google Scholar 

  • Breithaupt T, Tautz J (1990) The sensitivity of crayfish mechanoreceptors to hydrodynamic and acoustic stimuli. In: Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B (eds) Frontiers in crustacean neurobiology. Birkhäuser, Basel, pp 114–120

    Chapter  Google Scholar 

  • Chapman C (1980) Ecology of juvenile and adult Nephrops. In: Cobb J, Phillips B (eds) The biology and management of lobsters. Academic Press, New York, pp 143–178

    Chapter  Google Scholar 

  • Chiesa JJ, Aguzzi J, García JA, Sardà F, de la Iglesia HO (2010) Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda). J Biol Rhythm 25:277–287. doi:10.1177/0748730410376159

    Article  Google Scholar 

  • Dunlap JC, Loros JJ, DeCoursey PJ (2004) Chronobiology: biological timekeeping. Sinauer Associates, Sunderland

    Google Scholar 

  • Farmer A (1975) Synopsis of biological data on the Norway lobster Nephrops norvegicus (Linnaeus, 1758). FAO Fish Synop 112:1–97

    Google Scholar 

  • Fernández De Miguel F, Aréchiga H (1994) Circadian locomotor activity and its entrainment by food in the crayfish Procambarus clarkii. J Exp Biol 190:9–21

    Google Scholar 

  • Fraser PJ, Cruickshank SF, Shelmerdine RL (2003) Hydrostatic pressure effects on vestibular hair cell afferents in fish and crustacea. J Vestibul Res Equilib 13:235–242

    Google Scholar 

  • Gibson RN (1992) Tidally-synchronised behaviour in marine fishes. In: Ali MA (ed) Rhythms in fishes. Springer, New York, pp 63–81

    Chapter  Google Scholar 

  • Hammond R, Naylor E (1977) Effects of dusk and dawn on locomotor activity rhythms in the Norway lobster Nephrops norvegicus. Mar Biol 39:253–260

    Article  Google Scholar 

  • Hillis JP (1971) Studies on Dublin Bay prawns (Nephrops norvegicus) in the Irish Sea. Fish Leafl Dep Mar 22:1–11

    Google Scholar 

  • Hillis JP (1996) Factors affecting catchability in Nephrops: current speed. ICES CM K:21

  • Hopkins TS (1985) Physics of the sea. In: Margalef R (ed) Key environments: Western Mediterranean. Pergamon Press, New York, pp 100–125

    Google Scholar 

  • Johnson ML, Johnson MP (2013) The ecology and biology of Nephrops norvegicus. Academic Press, Adv Mar Biol 64

    Google Scholar 

  • Johnson MP, Lordan C, Power AM (2013) Habitat and ecology of Nephrops norvegicus. In: Johnson ML, Johnson MP (eds) The ecology and biology of Nephrops norvegicus. Adv Mar Biol. Academic Press 64:27–63

  • Katoh E, Sbragaglia V, Aguzzi J, Breithaupt T (2013) Sensory biology and behaviour of Nephrops norvegicus. In: Johnson ML, Johnson MP (eds) The ecology and biology of Nephrops norvegicus. Adv Mar Biol. Academic Press 64: 65–106

  • Koehl MA (2011) Hydrodynamics of sniffing by crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, Berlin, pp 85–102

    Google Scholar 

  • Krumme U (2009) Diel and tidal movements by fish and decapods linking tropical coastal ecosystems. In: Nagelkerken I (ed) Ecological connectivity among tropical coastal ecosystems. Springer, Netherlands, pp 271–324

    Chapter  Google Scholar 

  • Krumme U, Saint-Paul U, Rosenthal H (2004) Tidal and diel changes in the structure of a nekton assemblage in small intertidal mangrove creeks in northern Brazil. Aquat Living Resour 17:215–229. doi:10.1051/alr:2004019

    Article  Google Scholar 

  • Laroche J, Baran E, Rasoanandrasana N (1997) Temporal patterns in a fish assemblage of a semiarid mangrove zone in Madagascar. J Fish Biol 51:3–20

    Article  Google Scholar 

  • Last KS, Bailhache T, Kramer C, Kyriacou CP, Rosato E, Olive PJW (2009) Tidal, daily, and lunar-day activity cycles in the marine polychaete Nereis virens. Chronobiol Int 26:167–183. doi:10.1080/07420520902774524

    Article  Google Scholar 

  • Loc’h FL, Hily C (2005) Stable carbon and nitrogen isotope analysis of Nephrops norvegicus/Merluccius merluccius fishing grounds in the Bay of Biscay (Northeast Atlantic). Can J Fish Aquat Sci 62:123–132

    Article  Google Scholar 

  • Lorance P, Trenkel VM (2006) Variability in natural behaviour, and observed reactions to an ROV, by mid-slope fish species. J Exp Mar Biol Ecol 332:106–119

    Article  Google Scholar 

  • Main J, Sangster GI (1985) The behaviour of the Norway lobster Nephrops norvegicus (L.), during trawling. Scott Fish Res Rep 34:1–23

    Google Scholar 

  • Maltagliati F, Camilli L, Biagi F, Abbiati M (1998) Genetic structure of Norway lobster, Nephrops norvegicus (L.) (Crustacea: Nephropidae), from the Mediterranean Sea. Sci Mar 62:91–99. doi:10.3989/scimar.1998.62s191

    Article  Google Scholar 

  • Michalsen K, Godø OR, Fernö A (1996) Diel variation in the catchability of gadoids and its influence on the reliability of abundance indices. ICES J Mar Sci 53:389–395

    Article  Google Scholar 

  • Mrosovsky N (1999) Masking: history, definitions, and measurement. Chronobiol Int 16:415–429

    Article  CAS  Google Scholar 

  • Naylor E (2010) Chronobiology of marine organisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Newland P, Chapman C (1989) The swimming and orientation behaviour of the Norway lobster, Nephrops norvegicus (L.), in relation to trawling. Fish Res 8:63–80

    Article  Google Scholar 

  • Newland P, Neil D, Chapman C (1988) The reactions of the Norway lobster, Nephrops norvegicus (L.), to water currents. Mar FreshW Behav Phy 13:301–313

    Article  Google Scholar 

  • Passamonti M, Mantovani B, Scali V, Froglia C (1997) Allozymic characterization of Scottish and Aegean populations of Nephrops norvegicus. J Mar Biol Assoc 77:727–735

    Article  CAS  Google Scholar 

  • Pinnegar JK, Platts M (2011) APSTOM—an integrated database and portal for fish stomach record. Version 3.6. Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK. Phase 3, Final Report, July 2011

  • Refinetti R (2006) Circadian physiology, 2nd edn. Fla, CRC Press, Boca Raton

    Google Scholar 

  • Refinetti R (2012) Integration of biological clocks and rhythms. Compr Physiol 2:1213–1239. doi:10.1002/cphy.c100088

    Google Scholar 

  • Rice AL (1964) Observations on the effects of changes of hydrostatic pressure on the behaviour of some marine animals. J Mar Biol Assoc 44:163–175

    Article  Google Scholar 

  • Sbragaglia V, Aguzzi J, García J, Sarriá D, Gomariz S, Costa C, Menesatti P, Vilaró M, Manuel A, Sardà F (2013a) An automated multi-flume actograph for the study of behavioral rhythms of burrowing organisms. J Exp Mar Biol Ecol 446:177–185

    Article  Google Scholar 

  • Sbragaglia V, Aguzzi J, Garcia JA, Chiesa JJ, Angelini C, Sardà F (2013b) Dusk but not dawn burrow emergence rhythms of Nephrops norvegicus (Crustacea: Decapoda). Sci Mar 77:641–647

    Article  Google Scholar 

  • Schmitz OJ, Grabowski JH, Peckarsky BL, Preisser EL, Trussell GC, Vonesh JR (2008) From individuals to ecosystem function: toward an integration of evolutionary and ecosystem ecology. Ecology 89:2436–2445

    Article  Google Scholar 

  • Serrano A, Velasco F, Olaso I, Sánchez F (2003) Macrobenthic crustaceans in the diet of demersal fish in the Bay of Biscay in relation to abundance in the environment. Sarsia 88:36–48

    Article  Google Scholar 

  • Sokolove PG, Bushell WN (1978) The Chi square periodogram: its utility for analysis of circadian rhythms. J Theor Biol 72:131–160

    Article  CAS  Google Scholar 

  • Stamatis C, Triantafyllidis A, Moutou K, Mamuris Z (2004) Mitochondrial DNA variation in Northeast Atlantic and Mediterranean populations of Norway lobster, Nephrops norvegicus. Mol Ecol 13:1377–1390

    Article  CAS  Google Scholar 

  • Stewart JE, Horner GW, Arie B (1972) Effects of temperature, food, and starvation on several physiological parameters of the lobster Homarus americanus. J Fish Res Board Can 29:439–442. doi:10.1139/f72-072

    Article  Google Scholar 

  • Storrow B (1912) The prawn (Norway lobster, Nephrops norvegicus), and the prawn fishery of North Shields. Rep Dove Mar Lab 1:10–31

    Google Scholar 

  • Thomas HJ (1965) The white-fish communities associated with Nephrops norvegicus (L.) and the by-catch of white fish in the Norway lobster fishery, together with notes on Norway lobster predators. Rapp. p.-v. réun. - Cons. int. explor. mer 156:155–160

  • Wagner H-J, Kemp K, Mattheus U, Priede I (2007) Rhythms at the bottom of the deep sea: cyclic current flow changes and melatonin patterns in two species of demersal fish. Deep Sea Res Pt I 54:1944–1956

    Article  Google Scholar 

  • Watson W, Chabot CC (2010) High resolution tracking of adult horseshoe crabs Limulus polyphemus in a New Hampshire estuary using a fixed array ultrasonic telemetry. Curr Zool 56:599–610

    Google Scholar 

  • Wiese K (1976) Mechanoreceptors for near-field water displacements in crayfish. J Neurophysiol 39:816–833

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the RITFIM project (CTM2010-16274; PI: J. Aguzzi) funded by the Ministry of Science and Innovation (MICINN). We are grateful to Dr. S. Tecchio (Normandie Université UNICAEN, UMR BOREA MNHN, UPMC, CNRS-7208, IRD-207) for his help in developing the smoothing functions applied in Fig. 3. We are also grateful to J. Grassle, I. G. Priede and another unknown reviewer for their help to improve the quality of the manuscript. VS is a Predoctoral Fellow within the Formation Personal Investigator (FPI) scheme (MICINN). JA is a Ramón y Cajal Programme (MICINN) Postdoctoral Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Sbragaglia.

Ethics declarations

Conflict of interest

The authors declare the absence of conflict of interests for the data presented in this paper. Sampling and laboratory experiments followed the local legislation regarding animal welfare.

Additional information

Responsible Editor: J. Grassle.

Reviewed by I.G. Priede and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sbragaglia, V., García, J.A., Chiesa, J.J. et al. Effect of simulated tidal currents on the burrow emergence rhythms of the Norway lobster (Nephrops norvegicus). Mar Biol 162, 2007–2016 (2015). https://doi.org/10.1007/s00227-015-2726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2726-5

Keywords

Navigation