Skip to main content

Advertisement

Log in

Contribution of living and degrading kelp to coastal iodine fluxes

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Laminaria digitata forms locally extensive and ecologically important kelp beds in northern temperate regions. Its sporophytes retain large quantities of iodine which, when released into seawater (as iodide, I) and into air (as molecular iodine, I2), have the potential to contribute significantly to coastal iodine biogeochemical processes. Here, standing crop of a living L. digitata bed and biomass of degrading kelp deposited near the high tide mark were quantified in western Ireland (53°09′25″N, 09°06′58″W) in summer 2011. Measurements revealed an average of 17 living individuals m−2, accounting for 0.6 (kg dw) m−2, and the biomass of degrading kelp averaged 0.05 (kg dw) m−2. We further investigated the iodine-retention capacity of L. digitata and the effect of degradation. Under controlled conditions, I release into seawater and I2 emission into air depended on the physiological state of L. digitata. Fresh and “healthy” phylloids absorbed I from seawater with I2 emission rates reaching 27 nmol (g dw)−1 h−1. After 4 days of degradation, I2 emission rates were enhanced by a factor of 3.1. Over 29 days of submersed degradation, ~4.7 μmol I (g dw)−1 were released into seawater, a process which could trigger iodine recycling in coastal areas. Combined field and laboratory data suggest that living L. digitata sporophytes possess an I2 emission capacity of ~16 μmol m−2 h−1, whilst emersed degrading kelp contributes 1–5 μmol m−2 h−1 to coastal atmospheric I2 during summer. This study provides evidence that not only living but also degrading kelp acts as driver of coastal iodine fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amachi S (2008) Microbial contribution to global iodine cycling: volatilization, accumulation, reduction, oxidation, and sorption of iodine. Microbes Environ 23:269–276. doi:10.1264/jsme2.ME08548

    Article  Google Scholar 

  • Amachi S, Kamagata Y, Kanagawa T, Muramatsu Y (2001) Bacteria mediate methylation of iodine in marine and terrestrial environments. Appl Environ Microbiol 67:2718–2722. doi:10.1128/AEM.67.6.2718-2722.2001

    Article  CAS  Google Scholar 

  • Amachi S, Muramatsu Y, Akiyama Y, Miyazaki K, Yoshiki S, Hanada S, Kamagata Y, Ban-nai T, Shinoyama H, Fujii T (2005) Isolation of iodide-oxidizing bacteria from iodide-rich natural gas brines and seawaters. Microb Ecol 49:547–557. doi:10.1007/s00248-004-0056-0

    Article  CAS  Google Scholar 

  • Ar Gall E, Küpper FC, Kloareg B (2004) A survey of iodine content in Laminaria digitata. Bot Mar 47:30–37. doi:10.1515/BOT.2004.004

    CAS  Google Scholar 

  • Arakawa Y, Akiyama Y, Furukawa H, Suda W, Amachi S (2012) Growth stimulation of iodide-oxidizing α-Proteobacteria in iodide-rich environments. Microb Ecol 63:522–531. doi:10.1007/s00248-011-9986-5

    Article  CAS  Google Scholar 

  • Ashu-Ayem ER, Nitschke U, Monahan C, Chen J, Darby SB, Smith PD, O’Dowd CD, Stengel DB, Venables SD (2012) Coastal iodine emissions. 1. Release of I2 by Laminaria digitata in chamber experiments. Environ Sci Technol 46:10413–10421. doi:10.1021/es204534v

    Article  CAS  Google Scholar 

  • Ball SM, Hollingsworth AM, Humbles J, Leblanc C, Potin P, McFiggans G (2010) Spectroscopic studies of molecular iodine emitted into the gas phase by seaweed. Atmos Chem Phys 10:6237–6254. doi:10.5194/acp-10-6237-2010

    Article  CAS  Google Scholar 

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schumann R, Schubert H, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86. doi:10.1080/09670260701711376

    Article  Google Scholar 

  • Bartsch I, Vogt J, Pehlke C, Hanelt D (2013) Prevailing sea surface temperatures inhibits summer reproduction of the kelp Laminaria digitata at Helgoland (North Sea). J Phycol 49:1061–1073. doi:10.1111/jpy.12125

    Article  Google Scholar 

  • Bluhm K, Croot P, Wuttig K, Lochte K (2010) Transformation of iodate to iodide in marine phytoplankton driven by cell senescence. Aquat Biol 11:1–15. doi:10.3354/ab00284

    Article  Google Scholar 

  • Brady-Champbell MM, Campbell DB, Harlin MM (1984) Productivity of kelp (Laminaria spp.) near the southern limit in the northwestern Atlantic Ocean. Mar Ecol Prog Ser 18:79–88

    Article  Google Scholar 

  • Buchsbaum R, Valiela I, Swain T, Dzierzeski M, Allen S (1991) Available and refractory nitrogen in detritus of coastal vascular plants and macroalgae. Mar Ecol Prog Ser 72:131–143

    Article  Google Scholar 

  • Campos MLAM (1997) New approach to evaluating dissolved iodine speciation in natural waters using cathodic stripping voltammetry and a storage study for preserving iodine species. Mar Chem 57:107–117. doi:10.1016/S0304-4203(96)00093-X

    Article  CAS  Google Scholar 

  • Carpenter LJ, Archer SD, Beale R (2012) Ocean-atmosphere trace gas exchange. Chem Soc Rev 41:6473–6506. doi:10.1039/C2CS35121H

    Article  CAS  Google Scholar 

  • Chance R, Baker AR, Küpper FC, Hughes C, Kloareg B, Malin G (2009) Release and transformations of inorganic iodine by marine macroalgae. Estuar Coast Shelf Sci 82:406–414. doi:10.1016/j.ecss.2009.02.004

    Article  CAS  Google Scholar 

  • Colombini I, Chelazzi L (2003) Influence of marine allochthonous input on sandy beach communities. Oceanogr Mar Biol Annu Rev 41:115–159. ISBN: 978-0-415-25463-2

  • Coupland GT, Duarte CM, Walker DI (2007) High metabolic rates in beach cast communities. Ecosystems 10:1341–1350. doi:10.1007/s10021-007-9102-3

    Article  CAS  Google Scholar 

  • Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211. doi:10.1111/j.0022-3646.1996.00197.x

    Article  Google Scholar 

  • Davoult D, Engel CR, Arzel P, Knoch D, Laurans M (2011) Environmental factors and commercial harvesting: exploring possible links behind the decline of the kelp Laminaria digitata in Brittany, France. Cah Biol Mar 52(1):429–434

    Google Scholar 

  • Dayton PK (1985) Ecology of kelp communities. Annu Rev Ecol Syst 16:215–245

    Article  Google Scholar 

  • Dethier MN, Brown AS, Burgess S, Eisenlord ME, Galloway AWE, Kimber J, Lowe AT, O’Neil CM, Raymond WW, Sosik EA, Duggins DO (2014) Degrading detritus: changes in food quality of aging kelp tissue varies with species. J Exp Mar Biol Ecol 460:72–79. doi:10.1016/j.jembe.2014.06.010

    Article  Google Scholar 

  • Dixneuf S, Ruth AA, Vaughan S, Varma RM, Orphal J (2009) The time dependence of molecular iodine emission from Laminaria digitata. Atmos Chem Phys 9:823–829. doi:10.5194/acp-9-823-2009

    Article  CAS  Google Scholar 

  • Fiedler SE, Hese A, Ruth AA (2003) Incoherent broad-band cavity-enhanced absorption spectroscopy. Chem Phys Lett 371:284–294. doi:10.1016/S0009-2614(03)00263-X

    Article  CAS  Google Scholar 

  • García-Robledo E, Corzo A, García de Lomas J, van Bergeijk SA (2008) Biogeochemical effects of macroalgal decomposition on intertidal microbenthos: a microcosm experiment. Mar Ecol Prog Ser 356:139–151. doi:10.3354/meps07287

    Article  Google Scholar 

  • Gevaert F, Janquin M-A, Davoult D (2008) Biometrics in Laminaria digitata: a useful tool to assess biomass, carbon and nitrogen contents. J Sea Res 60:215–219. doi:10.1016/j.seares.2008.06.006

    Article  Google Scholar 

  • Gozlan RS, Margalith P (1974) Iodide oxidation by Pseudomonas iodooxidans. J Appl Bacteriol 37:493–499. doi:10.1111/j.1365-2672.1974.tb00474.x

    Article  CAS  Google Scholar 

  • Hardison AK, Canuel EA, Anderson IC, Veuger B (2010) Fate of macroalgae in benthic systems: carbon and nitrogen cycling within the microbial community. Mar Ecol Prog Ser 414:41–55. doi:10.3354/meps08720

    Article  CAS  Google Scholar 

  • Haug A, Jensen A (1954) Seasonal variations in the chemical composition of Alaria esculenta, Laminaria saccharina, Laminaria hyperborea and Laminaria digitata from northern Norway. Technical Report 84, Norwegian Institute of Seaweed Research

  • Huang R-J, Thorenz UR, Kundel M, Venables DS, Ceburnis D, Ho KF, Chen J, Vogel AL, Küpper FC, Smyth PPA, Nitschke U, Stengel DB, Berresheim H, O’Dowd CD, Hoffmann T (2013) The seaweeds Fucus vesiculosus and Ascophyllum nodosum are significant contributors to coastal iodine emissions. Atmos Chem Phys 13:5255–5264. doi:10.5194/acp-13-5255-2013

    Article  Google Scholar 

  • Kain JM (1979) A view of the genus Laminaria. Annu Rev Oceanogr Mar Biol 17:101–161

    Google Scholar 

  • Kornfeldt R-A (1984) Variation in distribution and biomass of marine benthic algae off Kulien, S Sweden. Nord J Bot 4:563–584. doi:10.1111/j.1756-1051.1984.tb02064.x

    Article  Google Scholar 

  • Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112. doi:10.1080/0967026031000094094

    Article  Google Scholar 

  • Krumhansl KA, Scheibling RE (2011) Detrital production in Nova Scotian kelp beds: patterns and processes. Mar Ecol Prog Ser 421:67–82. doi:10.3354/meps08905

    Article  Google Scholar 

  • Küpper FC, Schweigert N, Ar Gall E, Legendre J-M, Vilter H, Kloareg B (1998) Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta 207:163–171. doi:10.1007/s004250050469

    Article  Google Scholar 

  • Küpper FC, Kloareg B, Guern J, Potin P (2001) Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol 125:278–291. doi:10.1104/pp.125.1.278

    Article  Google Scholar 

  • Küpper FC, Carpenter LJ, McFiggans GB, Palmer CJ, Waite TJ, Boneberg E-M, Woitsch S, Weiller M, Abela R, Grolimund D, Potin P, Butler A, Luther GW III, Kroneck PMH, Meyer-Klaucke W, Feiters MC (2008) Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc Natl Acad Sci USA 105:6954–6958. doi:10.1073/pnas.0709959105

    Article  Google Scholar 

  • Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther GW III, Lu Z, Jonsson M, Kloo L (2011) Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew Chem Int Ed 50:11598–11620. doi:10.1002/anie.201100028

    Article  Google Scholar 

  • Leblanc C, Colin C, Cosse A, Delage L, La Barre S, Morin P, Fiévet B, Voiseux C, Ambroise Y, Verhaeghe E, Amouroux D, Donard O, Tessier E, Potin P (2006) Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie 88:1773–1785. doi:10.1016/j.biochi.2006.09.001

    Article  CAS  Google Scholar 

  • Leclerc J-C, Riera P, Leroux C, Lévêque L, Laurans M, Schaal G, Davoult D (2013a) Trophic significance of kelps in kelp communities in Brittany (France) inferred from isotopic comparisons. Mar Biol 160:3249–3258. doi:10.1007/s00227-013-2306-5

    Article  Google Scholar 

  • Leclerc J-C, Riera P, Leroux C, Lévêque L, Davoult D (2013b) Temporal variation in organic matter supply in kelp forests: linking structure to trophic functioning. Mar Ecol Prog Ser 494:87–105. doi:10.3354/meps10564

    Article  CAS  Google Scholar 

  • Leigh RJ, Ball SM, Whitehead J, Leblanc C, Shillings AJL, Mahajan AS, Oetjen H, Lee JD, Jones CE, Dorsey JR, Gallagher M, Jones RL, Plane JMC, Potin P, McFiggans G (2010) Measurements and modelling of molecular iodine emissions, transport and photodestruction in the coastal region around Roscoff. Atmos Chem Phys 10:11823–11838. doi:10.5194/acp-10-11823-2010

    Article  CAS  Google Scholar 

  • Lubchenko J, Gaines SD (1981) A unified approach of marine plant-herbivore interactions. I. Populations and communities. Annu Rev Ecol Syst 12:405–437

    Article  Google Scholar 

  • McFiggans G, Coe H, Burgess R, Allan J, Cubison M, Alfarra MR, Saunders R, Saiz-Lopez A, Plane JMC, Wevill DJ, Carpenter L, Rickard AR, Monks PS (2004) Direct evidence for coastal iodine particles from Laminaria macroalgae—linkage to emissions of molecular iodine. Atmos Chem Phys 4:701–713. doi:10.5194/acp-4-701-2004

    Article  CAS  Google Scholar 

  • McFiggans G, Bale CSE, Ball SM, Beames JM, Bloss WJ, Carpenter LJ, Dorsey J, Dunk R, Flynn MJ, Furneaux KL, Gallagher MW, Heard DE, Hollingsworth AM, Hornsby K, Ingham T, Jones CE, Jones RL, Kramer LJ, Langridge JM, Leblanc C, LeCrane J-P, Lee JD, Leigh RJ, Longley I, Mahajan AS, Monks PS, Oetjen H, Orr-Ewing AJ, Plane JMC, Potin P, Shillings AJL, Thomas F, von Glasow R, Wada R, Whalley LK, Whitehead JD (2010) Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) Roscoff coastal study. Atmos Chem Phys 10:2975–2999. doi:10.5194/acp-10-2975-2010

    Article  CAS  Google Scholar 

  • Merzouk A, Johnson LE (2011) Kelp distribution in the northwest Atlantic Ocean under a changing climate. J Exp Mar Biol Ecol 400:90–98. doi:10.1016/j.jembe.2011.02.020

    Article  Google Scholar 

  • Monahan C, Ashu-Ayem ER, Nitschke U, Darby SB, Smith PD, Stengel DB, Venables DS, O’Dowd CD (2012) Coastal iodine emissions: part 2. Chamber experiments of particle formation from Laminaria digitata-derived and laboratory-generated I2. Environ Sci Technol 46:10422–10428. doi:10.1021/es3011805

    Article  CAS  Google Scholar 

  • Nedergaard RI, Risgaard-Petersen N, Finster K (2002) The importance of sulfate reduction associated with Ulva lactuca thalli during decomposition: a mesocosm experiment. J Exp Mar Biol Ecol 275:15–29. doi:10.1016/S0022-0981(02)00211-3

    Article  CAS  Google Scholar 

  • Nitschke U, Stengel DB (2014) Iodine contributes to osmotic acclimatisation in the kelp Laminaria digitata (Phaeophyceae). Planta 239:521–530. doi:10.1007/s00425-013-1992-z

    Article  CAS  Google Scholar 

  • Nitschke U, Stengel DB (2015) A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chem 172:326–334. doi:10.1016/j.foodchem.2014.09.030

    Article  CAS  Google Scholar 

  • Nitschke U, Ruth AA, Dixneuf S, Stengel DB (2011) Molecular iodine emission rates and photosynthetic performance of different thallus parts of Laminaria digitata (Phaeophyceae) during emersion. Planta 233:737–748. doi:10.1007/s00425-010-1334-3

    Article  CAS  Google Scholar 

  • Nitschke U, Connan S, Stengel DB (2012) Chlorophyll a fluorescence responses of temperate Phaeophyceae under submersion and emersion regimes: a comparison of rapid and steady-state light curves. Photosynth Res 114:29–42. doi:10.1007/s11120-012-9776-z

    Article  CAS  Google Scholar 

  • Nitschke U, Dixneuf S, Ruth AA, Schmid M, Stengel DB (2013) Molecular iodine (I2) emission from two Laminaria species (Phaeophyceae) and impact of irradiance and temperature on I2 emission into air and iodide release into seawater from Laminaria digitata. Mar Environ Res 92:102–109. doi:10.1016/j.marenvres.2013.09.006

    Article  CAS  Google Scholar 

  • O’Dowd CD, Hoffmann T (2005) Coastal new particle formation: a review of the current state-of-the-art. Environ Chem 2:245–255. doi:10.1071/EN05077

    Article  Google Scholar 

  • O’Dowd CD, Jimenez JL, Bahreini R, Flagan RC, Seinfeld JH, Hämeri K, Pirjola L, Kulmala M, Jennings SG, Hoffmann T (2002) Marine aerosol formation from biogenic iodine emissions. Nature 417:632–636. doi:10.1038/nature00775

    Article  Google Scholar 

  • Orr KK, Wilding TA, Horstmeyer L, Weigl S, Heymans JJ (2014) Detached macroalgae: its importance to inshore sandy beach fauna. Estuar Coast Shelf Sci 150:125–135. doi:10.1016/j.ecss.2013.12.011

    Article  CAS  Google Scholar 

  • Palmer CJ, Anders TL, Carpenter LJ, Küpper FC, McFiggans GB (2005) Iodine and halocarbon response of Laminaria digitata to oxidative stress and links to atmospheric new particle production. Environ Chem 2:282–290. doi:10.1071/EN05078

    Article  CAS  Google Scholar 

  • Pehlke C, Bartsch I (2008) Changes in depth distribution and biomass of sublittoral seaweeds at Helgoland (North Sea) between 1970 and 2005. Clim Res 37:135–147. doi:10.3354/cr00767

    Article  Google Scholar 

  • Potin P, Bouarab K, Salaün J-P, Pohnert G, Kloareg B (2002) Biotic interactions of marine algae. Curr Opin Plant Biol 5:308–317. doi:10.1016/S1369-5266(02)00273-X

    Article  CAS  Google Scholar 

  • Rothäusler E, Gómez I, Karsten U, Tala F, Thiel M (2011) Physiological acclimation of floating Macrocystis pyrifera to temperature and irradiance ensures long-term persistence at the sea surface at mid-latitudes. J Exp Mar Biol Ecol 405:33–41. doi:10.1016/j.jembe.2011.05.018

    Article  Google Scholar 

  • Ruth AA, Dixneuf S, Raghunandan R (2014) Broadband cavity-enhanced absorption spectroscopy with incoherent light. In: Gagliardi G, Loock HP (eds) Cavity-enhanced spectroscopy and sensing. Springer, Berlin, pp 485–517. doi:10.1007/978-3-642-40003-2_14

    Chapter  Google Scholar 

  • Saenko GN, Kravtsova YY, Ivanenko VV, Sheludko SI (1978) Concentration of iodine and bromine by plants in seas of Japan and Okhotsk. Mar Biol 47:243–250. doi:10.1007/BF00541002

    Article  Google Scholar 

  • Saiz-Lopez A, Plane JMC (2004) Novel iodine chemistry in the marine boundary layer. Geophys Res Lett 31:L0411. doi:10.1029/2003GL019215

    Google Scholar 

  • Saiz-Lopez A, Plane JMC, Baker AR, Carpenter LJ, von Glasow R, Gómez Martin JC, McFiggans G, Saunders RW (2011) Atmospheric chemistry of iodine. Chem Rev 112:1773–1804. doi:10.1021/cr200029u

    Article  Google Scholar 

  • Sivertsen K (1997) Geographic and environmental factors affecting the distribution of kelp beds and barren grounds and changes in biota associated with kelp reduction at sites along the Norwegian coast. Can J Fish Aquat Sci 54:2872–2887. doi:10.1139/f97-186

    Article  Google Scholar 

  • Smith BD (1985) Recovery following experimental harvesting of Laminaria longicruris and L. digitata in southwestern Nova Scotia. Helgol Meeresunters 39:83–101. doi:10.1007/BF01997523

    Article  Google Scholar 

  • Spokes LJ, Liss PS (1996) Photochemically induced redox reactions in seawater, II nitrogen and iodine. Mar Chem 54:1–10. doi:10.1016/0304-4203(96)00033-3

    Article  CAS  Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459. doi:10.1017/S0376892902000322

    Article  Google Scholar 

  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197:696–711. doi:10.1111/nph.12047

    Article  Google Scholar 

  • Thomas H, Ougham HJ, Wagstaff C, Anthony D, Stead AD (2003) Defining senescence and death. J Exp Bot 54:1127–1132. doi:10.1093/jxb/erg133

    Article  CAS  Google Scholar 

  • tom Dieck I (1992) North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia 31:147–163. doi:10.2216/i0031-8884-31-2-147.1

    Article  Google Scholar 

  • tom Dieck I (1993) Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): ecological and biogeographical implications. Mar Ecol Prog Ser 100:253–264

    Article  Google Scholar 

  • Truesdale VW (2008) The biogeochemical effect of seaweeds upon close-to natural concentrations of dissolved iodate and iodide in seawater – Preliminary study with Laminaria digitata and Fucus serratus. Estuar Coast Shelf Sci 78:155–165. doi:10.1016/j.ecss.2007.11.022

    Article  Google Scholar 

  • Valiela I (1985) Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. J Exp Mar Biol Ecol 89:29–54. doi:10.1016/0022-0981(85)90080-2

    Article  CAS  Google Scholar 

  • van Bergeijk SA, Javier LH, Heyland A, Manchado M, Cañavate JP (2013) Uptake of iodide in the marine haptophyte Isochrysis sp. (T.ISO) driven by iodine oxidation. J Phycol 49:640–647. doi:10.1111/jpy.12073

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Colin D. O’Dowd (School of Physics and Ryan Institute, NUI Galway) and Professor Frithjof C. Küpper (Oceanlab, University of Aberdeen) for enriching the discussion on the biogeochemistry of iodine. We thank Dr Freddy Guihéneuf (Botany and Plant Science, School of Natural Sciences and Ryan Institute, NUI Galway) for helpful comments during the preparation of the manuscript. We gratefully acknowledge financial support by the Irish Research Council (IRC, Embark Initiative and INSPIRE postdoctoral fellowship program, Marie Curie CoFund (FP 7)), the Environmental Protection Agency (EPA large-scale project: “Exchange at the Air-Sea Interface: Air Quality & Climate ImpactS” 2007-CCRP-5.5) and Science Foundation Ireland (SFI, Investigator Project 12/IP/1502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Nitschke.

Additional information

Communicated by F. Weinberger.

Reviewed by F. Küpper, U. Karsten and undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitschke, U., Dixneuf, S., Schmid, M. et al. Contribution of living and degrading kelp to coastal iodine fluxes. Mar Biol 162, 1727–1738 (2015). https://doi.org/10.1007/s00227-015-2699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2699-4

Keywords

Navigation