Skip to main content

Advertisement

Log in

Molecular evidence supports coastal dispersal among estuaries for two benthic marine worm (Nephtyidae) species in southeastern Australia

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Understanding patterns of dispersal of marine organisms among estuaries is important for the conservation of biodiversity and the design of marine park networks. Whereas numerous studies have recently assessed dispersal potential among key marine vertebrates and habitat-forming macroalgae, relatively few have assessed the potential for dispersal in ecologically important benthic polychaete worms. Here, we used phylogeographic analyses to test for evidence of genetic disjunctions among populations of polychaete worms from different estuaries in southeastern Australia. Our study focused on two species from the family Nephtyidae (Aglaophamus australiensis and Nephtys longipes) that are found intertidally in soft sediments in estuaries. Both species have planktonic larvae, but little is known about the survival times of the larvae, or their potential to disperse to other estuaries rather than settling locally. Genetic analyses of two mitochondrial (cytochrome c oxidase subunit I and 16S rDNA) markers in both species and a nuclear marker (28S rDNA) in A. australiensis were carried out to assess whether geographically distinct populations show genetic differences. Little evidence of genetic differentiation among populations was found, despite a high level of genetic diversity within each species. Although some significant population pairwise FST differences were detected for both species via AMOVA, these appeared largely driven by singleton haplotype diversity, whereas several common haplotypes were shared among all populations. Our results suggest that sedentary, benthic estuarine organisms with planktonic larvae can disperse to distant estuaries with the aid of tidal flushing and coastal ocean currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2010) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193. doi:10.1890/10-1510.1

    Article  Google Scholar 

  • Barroso R, Klautau M, Solé-Cava AM, Paiva PC (2010) Eurythoe complanata (Polychaeta: Amphinomidae), the ‘cosmopolitan’ fireworm, consists of at least three cryptic species. Mar Biol 157:69–80. doi:10.1007/s00227-009-1296-9

    Article  Google Scholar 

  • Beerli P (1998) Estimation of migration rates and population sizes in geographically structured populations. In: Carvalho G (ed) Advances in Molecular Ecology., NATO-ASI workshop seriesIOS Press, Amsterdam, pp 39–53

    Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    Article  CAS  Google Scholar 

  • Bilton DT, Paula J, Bishop JDD (2002) Dispersal, genetic differentiation and speciation in estuarine organisms. Estuar Coast Shelf Sci 55:937–952. doi:10.1006/ecss.2002.1037

    Article  Google Scholar 

  • Borda E, Kudenov JD, Chevaldonné P, Blake JA, Desbruyères D, Fabri M-C, Hourdez S, Pleijel F, Shank TM, Wilson NG, Schulze A, Rouse GW (2013) Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps. Proc R Soc Lond B Biol Sci. doi:10.1098/rspb.2013.1876

    Google Scholar 

  • Bors EK, Rowden AA, Maas EW, Clark MR, Shank TM (2012) Patterns of deep-sea genetic connectivity in the New Zealand region: implications for management of benthic ecosystems. PLoS One 7:e49474. doi:10.1371/journal.pone.0049474

    Article  CAS  Google Scholar 

  • Bradbury IR, Campana SE, Bentzen P (2008a) Low genetic connectivity in an estuarine fish with pelagic larvae. Can J Fish Aquat Sci 65:147–158. doi:10.1139/f07-154

    Article  Google Scholar 

  • Bradbury IR, Laurel B, Snelgrove PVR, Bentzen P, Campana SE (2008b) Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc R Soc Biol Sci Ser B 275:1803–1809. doi:10.1098/rspb.2008.0216

    Article  Google Scholar 

  • Brown CW (1990) The significance of the South Atlantic Equatorial countercurrent to the ecology of the green turtle breeding population of Ascension Island. J Herpetol 24:81–84. doi:10.2307/1564294

    Article  Google Scholar 

  • Caron A, Boucher L, Desrosiers G, Retiere C (1995) Population dynamics of the polychaete Nephtys caeca in an intertidal estuarine environment. J Mar Biol Assoc UK 75:871–884. doi:10.1017/S0025315400038212 (Quebec, Canada)

    Article  Google Scholar 

  • Carr CM, Hardy SM, Brown TM, Macdonald TA, Hebert PDN (2011) A tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes. PLoS One 6:e22232. doi:10.1371/journal.pone.0022232

    Article  CAS  Google Scholar 

  • Chust G, Albaina A, Aranburu A, Borja Á, Diekmann OE, Estonba A, Franco J, Garmendia JM, Iriondo M, Muxika I, Rendo F, Rodríguez JG, Ruiz-Larrañaga O, Serrão EA, Valle M (2013) Connectivity, neutral theories and the assessment of species vulnerability to global change in temperate estuaries. Estuar Coast Shelf Sci 131:52–63. doi:10.1016/j.ecss.2013.08.005

    Article  CAS  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. doi:10.1046/j.1365-294x.2000.01020.x

    Article  CAS  Google Scholar 

  • Coleman MA (2013) Connectivity of the habitat-forming kelp, Ecklonia radiata within and among estuaries and open coast. PLoS One 8:e64667. doi:10.1371/journal.pone.0064667

    Article  CAS  Google Scholar 

  • Coleman MA, Chambers J, Knott NA, Malcolm HA, Harasti D, Jordan A, Kelaher BP (2011) Connectivity within and among a network of temperate marine reserves. PLoS One 6:e20168. doi:10.1371/journal.pone.0020168

    Article  CAS  Google Scholar 

  • Coleman MA, Feng M, Roughan M, Cetina-Heredia P, Connell SD (2013) Temperate shelf water dispersal by Australian boundary currents: implications for population connectivity. Limnol Oceanogr Fluids Environ 3:295–309. doi:10.1215/21573689-2409306

    Article  Google Scholar 

  • Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1:443–466. doi:10.1146/annurev.marine.010908.163757

    Article  Google Scholar 

  • Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527. doi:10.1126/science.1122039

    Article  CAS  Google Scholar 

  • Dixon-Bridges K, Gladstone W, Hutchings P (2014) Two new species of Micronephthys Friedrich, 1939 and one new species of Nephtys Cuvier, 1817 (Polychaeta: Phyllodocida: Nephtyidae) from eastern Australia with notes on Aglaophamus australiensis (Fauchald, 1965) and a key to all Australian species. Zootaxa 3872:513–540. doi:10.11646/zootaxa.3872.5.5

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Glasby CJ, Wei N-WV, Gibb KS (2013) Cryptic species of Nereididae (Annelida: Polychaeta) on Australian coral reefs. Invertebr Syst 27:245–264. doi:10.1071/IS12031

    Google Scholar 

  • Hutchings P (1992) Ballast water introductions of exotic marine organisms into Australia: current status and management options. Mar Pollut Bull 25:196–199. doi:10.1016/0025-326X(92)90225-U

    Article  Google Scholar 

  • Hutchings P (2004) Polychaetes — their biological diversity. Rec S Aust Mus 7:39–49 (Adel)

    Google Scholar 

  • Jenkins KM, Kingsford RT, Closs GP, Wolfenden BJ, Matthaei CD, Hay SE (2011) Climate change and freshwater ecosystems in Oceania: an assessment of vulnerability and adaptation opportunities. Pac Conserv Biol 17:201–219

    Google Scholar 

  • Johannesson K (1988) The paradox of Rockall—why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)? Mar Biol 99:507–513

    Article  Google Scholar 

  • Jolly MT, Jollivet D, Gentil F, Thiebaut E, Viard F (2004) Sharp genetic break between Atlantic and English channel populations of the polychaete Pectinaria koreni, along the North coast of France. Heredity 94:23–32. doi:10.1038/sj.hdy.6800543

    Article  Google Scholar 

  • Jolly MT, Viard F, Gentil F, Thiebaut E, Jollivet D (2006) Comparative phylogeography of two coastal polychaete tubeworms in the Northeast Atlantic supports shared history and vicariant events. Mol Ecol 15:1841–1855. doi:10.1111/j.1365-294X.2006.02910.x

    Article  CAS  Google Scholar 

  • Kennish MJ (2002) Environmental threats and environmental future of estuaries. Environ Conserv 29:78–107. doi:10.1017/S0376892902000061

    Article  Google Scholar 

  • Kesäniemi JE, Geuverink E, Knott KE (2012) Polymorphism in developmental mode and its effect on population genetic structure of a spionid polychaete, Pygospio elegans. Integ Comp Biol 52:181–196. doi:10.1093/icb/ics064

    Article  Google Scholar 

  • Meissner K, Bick A, Guggolz T, Götting M (2014) Spionidae (Polychaeta: Canalipalpata: Spionida) from seamounts in the NE Atlantic. Zootaxa 3786:201–245. doi:10.11646/zootaxa.3786.3.1

    Article  Google Scholar 

  • Nygren A, Pleijel F (2011) From one to ten in a single stroke—resolving the European Eumida sanguinea (Phyllodocidae, Annelida) species complex. Mol Phylogenet Evol 58:132–141. doi:10.1016/j.ympev.2010.10.010

    Article  Google Scholar 

  • Palumbi SR, Martin AP, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fool’s guide to PCR. Department of Zoology, University of Hawaii, Honolulu

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

    Article  CAS  Google Scholar 

  • Piggott MP, Banks SC, Tung P, Beheregaray LB (2008) Genetic evidence for different scales of connectivity in a marine mollusc. Mar Ecol Prog Ser 365:127–136. doi:10.3354/Meps07478

    Article  Google Scholar 

  • Roughan M, Middleton JH (2004) On the East Australian current: variability, encroachment, and upwelling. J Geophys Res Ocean 109:C07003. doi:10.1029/2003JC001833

    Google Scholar 

  • Roy PS, Williams RJ, Jones AR, Yassini I, Gibbs PJ, Coates B, West RJ, Scanes PR, Hudson JP, Nichol S (2001) Structure and function of south-east Australian estuaries. Estuar Coast Shelf Sci 53:351–384. doi:10.1006/ecss.2001.0796

    Article  Google Scholar 

  • Ruiz GM, Carlton JT, Grosholz ED, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632. doi:10.1093/icb/37.6.621

    Google Scholar 

  • Schüller M, Hutchings PA (2012) New species of Terebellides (Polychaeta: Trichobranchidae) indicate long-distance dispersal between western South Atlantic deep-sea basins. Zootaxa: 1–31

  • Sherman CDH, Hunt A, Ayre DJ (2008) Is life history a barrier to dispersal? Contrasting patterns of genetic differentiation along an oceanographically complex coast. Biol J Linn Soc 95:106–116. doi:10.1111/j.1095-8312.2008.01044.x

    Article  Google Scholar 

  • Sonnenberg R, Nolte AW, Tautz D (2007) An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front Zool 4:6. doi:10.1186/1742-9994-4-6

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTech 10:506–513

    CAS  Google Scholar 

Download references

Acknowledgments

We thank C. McGrath and J. Tan for laboratory assistance, and J. Pierson for assistance with some analyses. P. Rodgers, A. Murray and S. Keable helped with collecting, and S. Lindsey with photography. Funding was provided by the Australian Museum and by research funds for CIF from the Fenner School of Environment and Society at the Australian National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceridwen I. Fraser.

Additional information

Communicated by C. Riginos.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, L.M., Hutchings, P. & Fraser, C.I. Molecular evidence supports coastal dispersal among estuaries for two benthic marine worm (Nephtyidae) species in southeastern Australia. Mar Biol 162, 1319–1327 (2015). https://doi.org/10.1007/s00227-015-2671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2671-3

Keywords

Navigation