Skip to main content
Log in

Population dynamics of Strongylocentrotus droebachiensis in kelp forests and barren grounds in Norway

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A northward trend of declining abundance of sea urchins (Strongylocentrotus droebachiensis) and increasing kelp recovery along the coast of Norway has provided an opportunity to explore whether the decline of sea urchins can be explained by systematic variations in demographic or fitness-related traits. The population density of sea urchins in mid-Norway (65°70′N) close to the boundary between barren grounds and recently recovered kelp forests was only 26 % of that on barren grounds in northern Norway (70°70′N). Populations were dominated by young (2–4 years) individuals and age-specific numbers decreased nearly exponentially with age. The variation in most demographic variables was high among replicate sampling sites and test size. Mean age and growth rates did not differ consistently among sites in mid- and northern Norway nor between barren ground and kelp sites. In contrast, mortality rates in mid-Norway were 50 % higher than in northern Norway. We suggest that increasing predation pressure on sea urchins partly explains the higher mortality in mid-Norway. Recent studies have shown that recruitment of sea urchins is significantly lower in mid-Norway than in northern Norway. The lower mean density of sea urchins, and hence the progressing recovery of the kelp forests in mid-Norway, may thus result from a combination of recruitment failure and increasing mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. Primer-E Ltd, Plymouth

    Google Scholar 

  • Azzarello J, Smale DA, Lanlois TJ, Håkansson E (2014) Linking habitat characteristics to abundance patterns of canopy forming macroalgae and sea urchins in southwest Australia. Mar Biol Res 10:682–693

    Article  Google Scholar 

  • Balch T, Scheibling RE (2001) Larval supply, settlement and recruitment in echinoderms. In: Lawrence JM, Jangoux M (eds) Echinoderm studies, vol 6. Balkema, Lisse, pp 1–83

    Google Scholar 

  • Beverton RJH, Holt SJ (1957) On the dynamic of exploited fish populations. Fish Invest II 19:5–533

    Google Scholar 

  • Blicher ME, Rysgaard S, Sejr MK (2007) Growth and production of sea urchin Strongylocentrotus droebachiensis in a high-Arctic fjord, and growth along a climatic gradient (64–77°N). Mar Ecol Prog Ser 341:89–102

    Article  Google Scholar 

  • Brown MB, Forsythe AB (1974) Robust tests for the equality of variances. J Am Stat Assoc 69:364–367

    Article  Google Scholar 

  • Christie H, Rueness J (1998) Tareskog. In: Rinde E, Bjørge A, Eggereide A, Tufteland G (eds) Kystøkologi, den ressursrike norskekysten. Universitetsforlaget, Oslo, pp 164–169

    Google Scholar 

  • Dayton PK (1985) Ecology of kelp communities. Annu Rev Ecol Syst 16:215–245

    Article  Google Scholar 

  • Ebert TA (1982) Longevity, life-history, and relative body wall size in sea urchins. Ecol Monogr 52:353–394

    Article  Google Scholar 

  • Ebert TA (1983) Recruitment in echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm studies, vol 1. Balkema, Rotterdam, pp 169–201

    Google Scholar 

  • Ebert TA, Southon JR (2003) Red sea urchins (Strongylocentrotus franciscanus) can live over 100 years: confirmation with A-bomb 14 carbon. Fish Bull 101:915–922

    Google Scholar 

  • Estes JA, Tinker MT, Williams TM (1998) Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282:473–476

    Article  CAS  Google Scholar 

  • Fagerli CW, Norderhaug KM, Christie H (2013) Lack of sea urchin settlement may explain kelp forest recovery in overgrazed areas in Norway. Mar Ecol Prog Ser 488:119–132

    Article  Google Scholar 

  • Fagerli CW, Norderhaug KM, Christie H, Pedersen MF, Fredriksen S (2014) Predators of the destructive sea urchin grazer Strongylocentrotus droebachiensis on the Norwegian coast. Mar Ecol Prog Ser 502:207–218

    Article  Google Scholar 

  • Filbee-Dexter K, Scheibling RE (2014) Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar Ecol Prog Ser 495:1–25

    Article  Google Scholar 

  • Fujita D (2010) Current status and problems of isoyake in Japan. Bull Fish Res Agency 32:33–42

    Google Scholar 

  • Gagnon P, Himmelman JH, Johnson LE (2004) Temporal variation in community interfaces: kelp-bed boundary dynamics adjacent to persistent urchin barrens. Mar Biol 144:1191–1203

    Article  Google Scholar 

  • Gaylord B, Reed DC, Washburn L, Raimondi PT (2004) Physical-biological coupling in spore dispersal of kelp forest macroalgae. J Mar Syst 49:19–39

    Article  Google Scholar 

  • Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 115:513–585

    Article  Google Scholar 

  • Hart MW, Scheibling RE (1988) Heat waves, baby booms, and the destruction of kelp beds by sea urchins. Mar Biol 99:167–176

    Article  Google Scholar 

  • Hereu B, Zabala M, Linares C, Sala E (2004) Temporal and spatial variability in settlement of the sea urchin Paracentrotus lividus in the NW Mediterranean. Mar Biol 144:1011–1018

    Article  Google Scholar 

  • Hereu B, Zabala M, Linares C, Sala E (2005) The effects of predator abundance and habitat structural complexity on survival of juvenile sea urchins. Mar Biol 146:293–299

    Article  Google Scholar 

  • Himmelman JH (1986) Population biology of green sea urchins on rocky barrens. Mar Ecol Prog Ser 33:295–306

    Article  Google Scholar 

  • Himmelmann JH (1978) Reproductive cycle of the green sea urchin (Strongylocentrotus droebachiensis). Can J Zool 56:1828–1836

    Article  Google Scholar 

  • Himmelmann JH, Steel DH (1971) Foods and predators of the green sea urchin Strongylocentrotus droebachiensis in Newfoundland waters. Mar Biol 9:315–322

    Article  Google Scholar 

  • Hjorleifsson E, Kaasa O, Gunnarsson K (1995) Grazing of kelp by green sea urchin in Eyjafjordur, North Iceland. In: Skjoldal HR, Hopkins C, Erikstad KE, Leinaas HP (eds) Ecology of fjords and coastal waters. Elsevier, Amsterdam, pp 593–597

    Google Scholar 

  • Jensen M (1969) Age determination of echinoids. Sarsia 37(1):41–44

    Google Scholar 

  • Johnson CR, Mann KH (1988) Diversity, patterns of adaptation, and stability of Nova Scotian kelp beds. Ecol Monogr 58:129–154

    Article  Google Scholar 

  • Keats DW, Steele DH, South GR (2011) Atlantic wolffish (Anarhichas lupus L.; Pisces: Anarhichidae) predation on green sea urchins (Strongylocentrotus droebachiensis (O.F. Mull.); Echinodermata: Echinoidea) in eastern Newfoundland. Can J Zool 64(9):1920–1925

    Article  Google Scholar 

  • Kelly JR, Kira AK, Scheibling RE (2012) Drift algal subsidies to sea urchins in low-productivity habitats. Mar Ecol Prog Ser 452:145–157

    Article  Google Scholar 

  • Konar B (2001) Seasonal changes in subarctic sea urchin populations from different habitats. Polar Biol 24:754–763

    Article  Google Scholar 

  • Konar B (2013) Lack of recovery from disturbance in high-arctic boulder communities. Polar Biol 36:1205–1214

    Article  Google Scholar 

  • Krumhansl KA, Scheibling RE (2012) Production and fate of kelp detritus. Mar Ecol Prog Ser 467:281–302

    Article  Google Scholar 

  • Lawrence JM (1975) On the relationships between marine plants and sea urchins. Oceanogr Mar Biol Annu Rev 13:213–286

    Google Scholar 

  • Leinaas HP, Christie H (1996) Effects of removing sea urchins (Strongylocentrotus droebachiensis): stability of the barren state and succession of kelp forest recovery in the east Atlantic. Oecologia 105:524–536

    Article  Google Scholar 

  • Levitan DR (1988) Density-dependent size regulation and negative growth in the sea urchin Diadema antillarum Philippi. Oecologia 76:627–629

    Article  Google Scholar 

  • Mann KH (2000) Ecology of coastal waters. With implications for management. Blackwell Science, Oxford

    Google Scholar 

  • Meidel SK, Scheibling RE (1998) Annual reproductive cycle of the green sea urchin, Strongylocentrotus droebachiensis, in differing habitats in Nova Scotia, Canada. Mar Biol 131:461–478

    Article  Google Scholar 

  • Minor MA, Scheibling RE (1997) Effects of food ration and feeding regime on growth and reproduction of the sea urchin Strongylocentrotus droebachiensis. Mar Biol 129:159–167

    Article  Google Scholar 

  • Norderhaug KM, Christie HC (2009) Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Mar Biol Res 5:515–528

    Article  Google Scholar 

  • Pearse JS, Pearse VB (1975) Growth zones in the echinoid skeleton. Am Zool 15:731–753

    Google Scholar 

  • Ricker WE (1975) Computation and interpretation of biological statistics of fish populations. Fish Res Board Can Bull 191:1–382

    Google Scholar 

  • Rinde E, Christie H, Fagerli CW, Bekkby T, Gundersen H, Norderhaug KM, Hjermann DØ (2014) The influence of physical factors on kelp and sea urchin distribution in previous and still grazed areas in the NE Atlantic. PLoS One. doi:10.1371/journal.pone.0100222

    Google Scholar 

  • Robinson SMC, MacIntyre AD (1997) Aging and growth of the green sea urchin. Bull Aquac Assoc Can 97:56–60

    Google Scholar 

  • Rowley MP (1989) Settlement and recruitment of sea urchins (Strongylocentrotus spp.) in a sea urchin barren ground and a kelp bed: are populations regulated by settlement or post-settlement processes? Mar Biol 100:485–495

    Article  Google Scholar 

  • Russell MP (1998) Resource allocation plasticity in sea urchins: rapid, diet induced, phenotypic changes in the green sea urchin, Strongylocentrotus droebachiensis (Muller). J Exp Mar Biol Ecol 220:1–14

    Article  Google Scholar 

  • Russell MP, Meredith RW (2000) Natural growth lines in echinoid ossicles are not reliable indicators of age: a test using Strongylocentrotus droebachiensis. Invertebr Biol 119:410–420

    Article  Google Scholar 

  • Russell MP, Ebert TA, Petraitis PS (1998) Field estimates of growth and mortality of the green sea urchin, Strongylocentrotus droebachiensis. Ophelia 48:137–153

    Article  Google Scholar 

  • Scheibling RE (1986) Increased macroalgal abundance following mass mortalities of sea urchins (Strongylocentrotus droebachiensis) along the Atlantic coast of Nova Scotia. Oecologia 68:186–198

    Article  Google Scholar 

  • Scheibling RE (1996) The role of predation in regulating sea urchin populations in eastern Canada. Oceanol Acta 19:421–430

    Google Scholar 

  • Scheibling RE, Hatcher BG (2001) The ecology of Strongylocentrotus droebachiensis. In: Lawrence JM (ed) Edible sea urchins: biology and ecology. Elsevier Science B.V, Amsterdam, pp 271–306

    Chapter  Google Scholar 

  • Scheibling RE, Lauzon-Guay JS (2010) Killer storms: North Atlantic hurricanes and disease outbreaks in sea urchins. Limnol Oceanogr 55:2331–2338

    Article  Google Scholar 

  • Scheibling RE, Robinson MC (2008) Settlement behaviour and early post-settlement predation of the sea urchin Strongylocentrotus droebachiensis. J Exp Mar Biol Ecol 365:59–66

    Article  Google Scholar 

  • Sivertsen K (1997) Geographic and environmental factors affecting the distribution of kelp beds and barren grounds and changes in biota associated with kelp reduction at sites along the Norwegian coast. Can J Fish Aquat Sci 54:2872–2887

    Article  Google Scholar 

  • Sivertsen K, Hopkins CCE (1995) Demography of the echinoid Strongylocentrotus droebachiensis related to biotope in the northern Norway. In: Skjoldal HR, Hopkins C, Erikstad KE, Leinaas HP (eds) Ecology of fjords and coastal waters. Elsevier, Amsterdam, pp 549–571

    Google Scholar 

  • Skadsheim A, Christie H, Leinaas HP (1995) Population reductions of Strongylocentrotus droebachiensis (Echinodermata) in Norway and the distribution of its endoparasite Echinomermella matsi (Nematoda). Mar Ecol Prog Ser 119:199–209

    Article  Google Scholar 

  • Steneck RS, Johnson C (2014) Kelp forests: dynamic patterns, processes and feedbacks. In: Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ (eds) Marine community ecology and conservation. Sinauer Associates, USA, pp 315–366

    Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Article  Google Scholar 

  • Steneck RS, Vavrinec J, Leland AV (2004) Accelerating trophic-level dysfunction in kelp forest ecosystems of the western North Atlantic. Ecosystems 7:323–332

    Article  Google Scholar 

  • Steneck RS, Leland A, McNaught DC, Vavrinec J (2013) Ecosystem flips, locks, and feedbacks: the lasting effects of fisheries on Maine’s kelp forest ecosystem. Bull Mar Sci 89:1–25

    Article  Google Scholar 

  • Stien A, Leinaas HP, Halvorsen O, Christie H (1998) Population dynamics of the Echinomermella matsi (Nematoda)—Strongylocentrotus droebachiensis (Echinoida) system: effects on host fecundity. Mar Ecol Prog Ser 163:193–201

    Article  Google Scholar 

  • Tegner MJ, Dayton PK (1981) Population structure, recruitment and mortality of two sea urchins (Strongylocentrotus franciscanus and S. purpuratus)in a kelp forest. Mar Ecol Prog Ser 2:255–268

    Article  Google Scholar 

  • Vadas RL (1977) Preferential feeding: an optimization strategy in sea urchins. Ecol Monogr 47:337–371

    Article  Google Scholar 

  • Vadas RL, Smith BD, Beal B, Dowling T (2002) Sympatric growth morphs and size bimodality in the green sea urchin (Strongylocentrotus droebachiensis). Ecol Monogr 72:113–132

    Article  Google Scholar 

  • Wharton WG, Mann KH (1981) Relationship between destructive grazing by the sea urchin, Strongylocentrotus droebachiensis, and the abundance of American lobster, Homarus americanus, on the Atlantic coast of Nova Scotia. Can J Fish Aquat Sci 38:1339–1349

    Article  Google Scholar 

  • Winsor CP (1932) The Gompertz curve as a growth curve. Proc Natl Acad Sci USA 18:1–8

    Article  CAS  Google Scholar 

  • Woll AK, van der Meeren GI, Fossen I (2006) Spatial variation in abundance and catch composition of Cancer pagurus in Norwegian waters: biological reasoning and implications for assessment. ICES J Mar Sci 63:421–433

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River 663 pp

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Norwegian Research Council (NFR) and Norwegian Institute for Water Research (NIVA) as part of the project “Habitat restoration in overgrazed areas on the northern Norwegian coast”. The authors would like to thank four anonymous reviewers for their helpful and constructive comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilla With Fagerli.

Additional information

Communicated by P. Gagnon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagerli, C.W., Stadniczeñko, S.G., Pedersen, M.F. et al. Population dynamics of Strongylocentrotus droebachiensis in kelp forests and barren grounds in Norway. Mar Biol 162, 1215–1226 (2015). https://doi.org/10.1007/s00227-015-2663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2663-3

Keywords

Navigation