Skip to main content
Log in

Spermatophore production as a function of food abundance and age in the calanoid copepods, Acartia tonsa and Acartia hudsonica

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Lifetime spermatophore (sperm packet) production, which can provide valuable information about male energetics and mating, is not known for any species of copepod. Spermatophore production could limit reproduction in species in which females require multiple matings to remain fertilized and in populations that often have adult sex ratios highly skewed toward females. Spermatophore production rates were measured in the laboratory for two species of calanoid copepods, Acartia tonsa and Acartia hudsonica, from time of maturation until death, and under three food regimes (high, low, and no food). Rates of spermatophore production in A. tonsa were independent of food treatment. By contrast, in A. hudsonica, spermatophore production was significantly greater under high food than in low or no food. Spermatophore production decreased significantly with age in both species and the majority of males ceased producing spermatophores halfway through their adult lives. This pattern occurred regardless of food treatment, except for in A. hudsonica under low-food conditions: low production rates in younger males were compensated by continued reproduction into old age. Therefore, there was no difference in the total lifetime number of spermatophores produced by males of A. hudsonica fed at high- or low-food conditions. In the absence of food, however, significantly fewer spermatophores were produced. In A. tonsa, there was no difference among food treatments in the total number of spermatophores produced over a male’s life. The effect of these low rates of spermatophore production on fertilization was evident in the field. During 2 years of weekly collections, at no point in time were all females in the population fertilized. We conclude that low rates of spermatophore production over a lifetime and the short reproductive period of males contribute to the low frequencies of mated females in field populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali AK, Primicerio R, Folstad I, Liljedal S, Berge J (2009) Morphological correlates of mating frequency and clutch size in wild caught female Eudiaptomus graciloides (Copepoda: Calanoida). J Plankton Res 31:389–397

    Article  Google Scholar 

  • Anstensrud M (1990) Mating strategies of two parasitic copepods Lernaeocera branchialis (L.) (Pennellidae) and Lepeophtheirus pectoralis (Müller) (Caligidae) on flounder: polygamy, sex-specific age at maturity and sex ratio. J Exp Mar Biol Ecol 136:141–158

    Article  Google Scholar 

  • Anstensrud M (1992) Mate guarding and mate choice in two copepods, Lernaeocera branchialis (L.)(Pennellidae) and Lepeophtheirus pectoralis (Müller) (Caligidae), parasitic on flounder. J Crustac Biol 12:31–40

    Article  Google Scholar 

  • Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164

    Article  Google Scholar 

  • Bagøien E, Kiørboe T (2005) Blind dating-mate finding in planktonic copepods. III. Hydromechanical communication in Acartia tonsa. Mar Ecol Prog Ser 300:129–133

    Article  Google Scholar 

  • Bateman AJ (1948) Intrasexual selection in Drosophila. Heredity 2:349–368

    Article  CAS  Google Scholar 

  • Bergreen U, Hansen B, Kiørboe T (1988) Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implication for determination of copepod production. Mar Biol 99:341–352

    Article  Google Scholar 

  • Besiktepe S, Dam HG (2002) Coupling of ingestion and defecation as a function of diet in the calanoid copepod Acartia tonsa. Mar Ecol Prog Ser 229:151–164

    Article  Google Scholar 

  • Birkhead TR, Møller AP (1998) Sperm competition and sexual selection. Academic Press, San Diego

    Google Scholar 

  • Boggs CL (1990) A general model of the role of male-donated nutrients in female insects’ reproduction. Am Nat 136:598–617

    Article  Google Scholar 

  • Boggs CL (1995) Male nuptial gifts: phenotypic consequences and evolutionary implications. In: Leather SR, Hardie J (eds) Insect reproduction. CRC Press, Boca Raton, pp 215–242

    Google Scholar 

  • Bonduriansky R, Brassil CE (2005) Reproductive ageing and sexual selection on male body size in a wild population of antler flies (Protopiophila litigara). J Evol Biol 18:1332–1340

    Article  CAS  Google Scholar 

  • Bradbury JW, Andersson MB (1987) Sexual selection: testing the alternatives. Wiley, New York

    Google Scholar 

  • Burris ZP, Dam HG (2014) Female mating status affects mating and male mate-choice in the copepod genus Acartia. J Plankton Res. doi:10.1093/plankt/fbu090

    Google Scholar 

  • Burton RS (1985) Mating system of the intertidal copepod Tigriopus californicus. Mar Biol 86:247–252

    Article  Google Scholar 

  • Cardoso MZ, Gilbert LE (2007) A male gift to its partner? Cyanogenic glycosides in the spermatophore of longwing butterflies (Heliconius). Naturwissenschaften 94:39–42

    Article  CAS  Google Scholar 

  • Ceballos S, Kiørboe T (2010) First evidences of sexual selection by mate choice in marine zooplankton. Oecologia 164:627–635

    Article  Google Scholar 

  • Ceballos S, Kiørboe T (2011) Senescence and sexual selection in a pelagic copepod. PLoS One. doi:10.1371/journal.pone.0018870

    Google Scholar 

  • Ceballos S, Sichlau MH, Heuschele J, Kiørboe T (2014) Low fertilization rates in a pelagic copepod caused by sexual selection? J Plankton Res 36:736–742

    Article  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Choi KH, Kimmerer WJ (2009) Mating success and its consequences for population growth in an estuarine copepod. Mar Ecol Prog Ser 377:183–191

    Article  Google Scholar 

  • Clutton-Brock TH (1988) Reproductive success. University of Chicago Press, Chicago

    Google Scholar 

  • Conover RJ (1956) Oceanography of Long Island Sound, 1952–1954. VI. Biology of Acartia clausi and A. tonsa. Bull Bingham Oceanogr Coll 15:6–233

    Google Scholar 

  • Dam HG, Peterson WT, Bellantoni DC (1994) Seasonal feeding and fecundity of the calanoid copepod Acartia tonsa in Long Island Sound: is omnivory important to egg production? Hydrobiologia 292:191–199

    Article  Google Scholar 

  • Deevey GB (1960) The zooplankton of the surface waters of the Delaware Bay region. Bull Bingham Oceanogr Coll 17:5–53

    Google Scholar 

  • Defaye D, Cuoc C, Brunet M (2000) Genital structures and spermatophore placement in female Paradiaptominae (Copepoda, Calanoida, Diaptomidae). J Crustac Biol 20:245–261

    Article  Google Scholar 

  • Dewsbury DA (1982) Ejaculate cost and male choice. Am Nat 119:601–610

    Article  Google Scholar 

  • Durbin EG, Durbin AG, Campbell RG (1992) Body size and egg production in the marine copepod Acartia hudsonica during a winter–spring diatom bloom in Narragansett Bay. Limnol Oceanogr 37:342–360

    Article  Google Scholar 

  • Ferrari F, Dojiri M (1987) The calanoid copepod Euchaeta antarctica from the Southern Ocean Atlantic sector midwater trawls, with observations on spermatophore dimorphism. J Crustac Biol 7:458–480

    Article  Google Scholar 

  • Finiguerra MB, Dam HG, Avery DE, Burris Z (2013) Sex-specific tolerance to starvation in the copepod Acartia tonsa. J Exp Mar Biol Ecol 446:17–21

    Article  Google Scholar 

  • Guillard RR (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 29–60

    Chapter  Google Scholar 

  • Gulati R, Demott W (1997) The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw Biol 38:753–768

    Article  Google Scholar 

  • Gwynne DT (1997) The evolution of edible sperm sacs and other forms courtship feeding in crickets, katydids, and their kin (Orthoptera: Ensifera). In: Choe JC, Crespi BJ (eds) The evolution of mating systems in insects and arachnids. Cambridge University Press, Cambridge, pp 110–129

    Chapter  Google Scholar 

  • Gwynne DT (2008) Sexual conflict over nuptial gifts in insects. Annu Rev Entomol 53:83–101

    Article  CAS  Google Scholar 

  • Hammer RM (1978) Scanning electron microscope study of the spermatophore of Acartia tonsa (Copepoda: Calanoida). Trans Am Microsc Soc 97:386–389

    Article  Google Scholar 

  • Heuch PA, Schram TA (1996) Male mate choice in a natural population of the parasitic copepod Lernaeocera branchialis (Copepoda: Pennellidae). Behaviour 133:221–239

    Article  Google Scholar 

  • Heuschele J, Kiørboe T (2012) The smell of virgins: mating status of females affects male swimming behaviour in Oithona davisae. J Plankton Res 34:929–935

    Article  Google Scholar 

  • Heuschele J, Ceballos S, Anderson Borg CM, Bjærke O, Isari S, Lasley-Rasher R, Lindehoff E, Souissi A, Souissi S, Titelman J (2014) Non-consumptive effects of predator presence on copepod reproduction: insights from a mesocosm experiment. Mar Biol. doi:10.1007/s00227-014-2449-z

    Google Scholar 

  • Hirschfeld HS (1974) Some observations on the breeding of Pseudocalanus in the laboratory and comparisons with other calanoid species. B.Sc. Hons. thesis, Dalhousie University, Halifax, Nova Scotia

  • Hirst AG, Kiørboe T (2002) Mortality of marine planktonic copepods: global rates and patterns. Mar Ecol Prog Ser 230:195–209

    Article  Google Scholar 

  • Hopkins CCE (1978) The male genital system, and spermatophore production and function in Euchaeta norvegica Boeck (Copepoda: Calanoida). J Exp Mar Biol Ecol 35:197–231

    Article  Google Scholar 

  • Hopkins CCE (1982) The breeding biology of Euchaeta norvegica (Boeck) (Copepoda: Calanoida) in Loch Etive, Scotland: assessment of breeding intensity in terms of seasonal cycles in the sex ratio, spermatophore attachment, and egg-sac production. J Exp Mar Biol Ecol 60:91–102

    Article  Google Scholar 

  • Hopkins CCE, Machin D (1977) Patterns of spermatophore distribution and placement in Euchaeta norvegica (Copepoda: Calanoida). J Mar Biol Assoc UK 57:113–131

    Article  Google Scholar 

  • Ianora A, Poulet SA (1993) Egg viability in the copepod Temora stylifera. Limnol Oceanogr 38:1615–1626

    Article  Google Scholar 

  • Ianora A, Poulet SA, Miralto A (1995) A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Mar Biol 121:533–539

    Article  Google Scholar 

  • Ianora A, Poulet SA, Miralto A, Grottoli R (1996) The diatom Thalassiosira rotula affects reproductive success in the copepod Acartia clausi. Mar Biol 125:279–286

    Article  Google Scholar 

  • Ianora A, Miralto A, Buttino I, Romano G, Poulet SA (1999) First evidence of some dinoflagellates reducing male copepod fertilization capacity. Limnol Oceanogr 44:147–153

    Article  Google Scholar 

  • Irigoien X, Harris RP, Verheye HM, Joly P, Runge J, Starr M, Davidson R (2002) Copepod hatching success in marine ecosystems with high diatom concentrations. Nature 419:387–389

    Article  CAS  Google Scholar 

  • Kiørboe T (2006) Sex, sex-ratios, and the dynamics of pelagic copepod populations. Oecologia 148:40–50

    Article  Google Scholar 

  • Kiørboe T (2007) Mate finding, mating, and population dynamics in a planktonic copepod Oithona davisae: there are too few males. Limnol Oceanogr 52:1511–1522

    Article  Google Scholar 

  • Kiørboe T, Bagøien E (2005) Motility patterns and mate encounter rates in planktonic copepods. Limnol Oceanogr 50:1999–2007

    Article  Google Scholar 

  • Lazzaretto I, Salvato B, Libertini A (1990) Evidence of chemical signaling in Tigriopus fulvus (Copepoda, Harpacticoida). Crustaceana 59:171–179

    Article  Google Scholar 

  • Lee WY, McAlice BJ (1979) Seasonal succession and breeding cycles of three species of Acartia (Copepoda: Calanoida) in a Maine estuary. Estuaries 2:228–235

    Article  Google Scholar 

  • Lee ET, Wang J (2003) Statistical methods for survival data analysis. Wiley, New York

    Book  Google Scholar 

  • Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  • Maps F, Runge JA, Zakardjian B, Joly P (2005) Egg production and hatching success of Temora longicornis (Copepoda, Calanoida) in the southern Gulf of St. Lawrence. Mar Ecol Prog Ser 285:117–128

    Article  Google Scholar 

  • Marshall SM, Orr AP (1952) On the biology of Calanus finmarchicus. VII. Factors affecting egg production. J Mar Biol Assoc UK 30:527–549

    Article  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. In: Blaxter J, Southward A (eds) Advances in marine biology. Academic Press, San Diego, p 710

    Google Scholar 

  • McKean KA, Nunney L (2001) Increased sexual activity reduces male immune function in Drosophila melanogaster. Proc Natl Acad Sci USA 98:7904–7909

    Article  CAS  Google Scholar 

  • Miralto A, Ianora A, Poulet SA (1995) Food type induces different reproductive responses in the copepod Centropages typicus. J Plankton Res 17:1521–1534

    Article  Google Scholar 

  • Müller-Navarra D, Lampert W (1996) Seasonal patterns of food limitation in Daphnia galeata: separating food quantity and food quality effects. J Plankton Res 18:1137–1157

    Article  Google Scholar 

  • Ohtsuka S, Huys R (2001) Sexual dimorphism in calanoid copepods: morphology and function. Hydrobiologia 453:441–466

    Article  Google Scholar 

  • Parrish KK, Wilson DF (1978) Fecundity studies on Acartia tonsa (Copepoda: Calanoida) in standardized culture. Mar Biol 46:65–81

    Article  Google Scholar 

  • Peterson WT (1986) The effects of seasonal variations in stratification on plankton dynamics in Long Island Sound. In: Bowman MJ (ed) Tidal mixing and plankton dynamics. Springer, New York, pp 297–320

    Chapter  Google Scholar 

  • Peterson WT (2001) Patterns in stage duration and development among marine and freshwater calanoid and cyclopoid copepods: a review of rules, physiological constraints, and evolutionary significance. Hydrobiologia 454:91–105

    Article  Google Scholar 

  • Rodríguez-Graña L, Calliari D, Tiselius P, Hansen BW, Sköld HN (2010) Gender specific ageing and non-Mendelian inheritance of oxidative damage in marine copepods. Mar Ecol Prog Ser 401:1–13

    Article  Google Scholar 

  • Saether BE (1990) Age-specific variation in reproductive performance of birds. Curr Ornithol 7:251–283

    Google Scholar 

  • Sichlau MH, Kiørboe T (2011) Age- and size-dependent mating performance and fertility in a pelagic copepod, Temora longicornis. Mar Ecol Prog Ser 442:123–132

    Article  Google Scholar 

  • Sterner RW, Schulz KL (1998) Zooplankton nutrition: recent progress and a reality check. Aquat Ecol 32:261–279

    Article  Google Scholar 

  • Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press, Harvard

    Book  Google Scholar 

  • Trivers R (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man. Aldine, Chicago

    Google Scholar 

  • Turner JT, Ianora A, Miralto A, Laabir M, Esposito F (2001) Decoupling of copepod grazing rates, fecundity and egg-hatching success on mixed and alternating diatom and dinoflagellate diets. Mar Ecol Prog Ser 220:187–199

    Article  Google Scholar 

  • Uchima M (1985) Copulation in the marine copepod Oithona davisae Ferrari and Orsi. Bull Plankton Soc Jpn 32:31–36

    Google Scholar 

  • Uye SI, Sano K (1995) Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar Ecol Prog Ser 118:121–128

    Article  Google Scholar 

  • Vahed K (1998) The function of nuptial feeding in insects: a review of empirical studies. Biol Rev Camb Philos Soc 73:43–78

    Article  Google Scholar 

  • Wedekind C, Jakobsen PJ (1998) Male-biased susceptibility to helminth infection: an experimental test with a copepod. Oikos 81:458–462

    Article  Google Scholar 

  • Williamson CE, Butler NM (1987) Temperature, food and mate limitation of copepod reproductive rates: separating the effects of multiple hypotheses. J Plankton Res 9:821–836

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (Grant No. OCE-1130284), and a Graduate Research Fellowship from the College of Liberal Arts and Sciences at the University of Connecticut awarded to Z.P. Burris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Burris.

Additional information

Communicated by X. Irigoyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burris, Z.P., Dam, H.G. Spermatophore production as a function of food abundance and age in the calanoid copepods, Acartia tonsa and Acartia hudsonica . Mar Biol 162, 841–853 (2015). https://doi.org/10.1007/s00227-015-2628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2628-6

Keywords

Navigation