Skip to main content
Log in

The body-size structure of macrobenthos changes predictably along gradients of hydrodynamic stress and organic enrichment

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Body size is related to an extensive number of species traits and ecological processes and has therefore been suggested as an effective metric to assess community changes and ecosystem’s state. However, the applicability of body size as an ecological indicator in benthic environments has been hindered by the poor knowledge of the factors influencing the size spectra of organisms. By applying biological trait analysis (BTA) and generalized linear models to a species dataset collected in the German Wadden Sea (53°41′14′′ N, 7°14′19′′ E) between 1999 and 2012, we show that the size structure of the macrobenthic community changes predictably along environmental gradients. Specifically, body size increases with increasing current-induced shear stress and sediment organic matter content. In addition, the presence of oyster–mussel reefs in one of the sampling stations enhanced the survival of species belonging to the smallest size categories in habitats with high hydrodynamic energy. This was probably due to the local sheltering effects, which together with biodeposition also increased organic matter in the sediment, likely favoring large deposit feeders as well. Our results suggest that body size can be a useful trait for estimating effects of anthropogenic stressors, such as organic enrichment or alteration of hydrodynamic regime and could therefore be effectively included in current monitoring programs of intertidal macrobenthic communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abelson A, Denny M (1997) Settlement of marine organisms in flow. Annu Rev Ecol Syst 28:317–339

    Article  Google Scholar 

  • Airoldi L, Beck MW (2007) Loss, status and trends for coastal marine habitats of Europe. In: Gibson RN, Atkinson RJA, Gordon JDM (eds) Oceanography and Marine biology: an annual review, vol 45. CRC Press, Boca Raton, pp 345–405

    Google Scholar 

  • Allen C, Garmestani A, Havlicek T, Marquet P, Peterson G, Restrepo C, Stow C, Weeks B (2006) Patterns in body mass distributions: sifting among alternative hypotheses. Ecol Lett 9:630–643. doi:10.1111/j.1461-0248.2006.00902.x

    Article  CAS  Google Scholar 

  • Armonies W, Hellwig-Armonies M (1992) Passive settlement of Macoma balthica spat on tidal flats of the Wadden Sea and subsequent migration of juveniles. Neth J Sea Res 29:371–378

    Article  Google Scholar 

  • Basset A, Barbone E, Borja A et al (2012) A benthic macroinvertebrate size spectra index for implementing the water framework directive in coastal lagoons in Mediterranean and Black Sea ecoregions. Ecol Indic 12:72–83. doi:10.1016/j.ecolind.2011.06.012

    Article  Google Scholar 

  • Beck M (1995) Size-specific shelter limitation in stone crabs: a test of the demographic bottleneck hypothesis. Ecology 76:968–980

    Article  Google Scholar 

  • Becker G, Dick S, Dippner J (1992) Hydrography of the German bight. Mar Ecol Prog Ser 91:9–18

    Article  Google Scholar 

  • Borgmann U (1987) Models on the slope of, and biomass flow up, the biomass size spectrum. Can J Fish Aquat Sci 44:136–140

    Article  Google Scholar 

  • Borja A, Barbone E, Basset A, Basset A, Borgersen G, Brkljacic M, Elliott M, Garmendia JM, Marques JC, Mazik K, Muxika I, Magalhães Neto J, Norling K, Rodríguez JG, Rosati I, Rygg B, Teixeira H, Trayanova A (2011) Response of single benthic metrics and multi-metric methods to anthropogenic pressure gradients, in five distinct European coastal and transitional ecosystems. Mar Pollut Bull 62:499–513. doi:10.1016/j.marpolbul.2010.12.009

    Article  CAS  Google Scholar 

  • Bouma H, Duiker JMC, de Vries PP, Herman PMJ, Wolff WJ (2001) Spatial pattern of early recruitment of Macoma balthica (L.) and Cerastoderma edule (L.) in relation to sediment dynamics on a highly dynamic intertidal sandflat. J Sea Res 45:79–93

    Article  Google Scholar 

  • Bourassa N, Morin A (1995) Relationships between size structure of invertebrate assemblages and trophy and substrate composition in streams. J North Am Benthol Soc 14:393–403. doi:10.2307/1467205

    Article  Google Scholar 

  • Bremner J, Rogers S, Frid C (2006) Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecol Indic 6:609–622. doi:10.1016/j.ecolind.2005.08.026

    Article  Google Scholar 

  • Bromley R (1990) Trace fossils: Biology and Taphonomy. Unwin Hyman, London

    Google Scholar 

  • Brooks J, Dodson S (1965) Predation, body size, and composition of plankton. Science 150:28–35

    Article  CAS  Google Scholar 

  • Brown J, Marquet P, Taper M (1993) Evolution of body size: consequences of an energetic definition of fitness. Am Nat 142:573–584

    Article  CAS  Google Scholar 

  • Brown J, Gillooly J, Allen A, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Calder W A III (1984) Size, function and life history. Harvard University Press, Cambridge

    Google Scholar 

  • Charvet S, Kosmala A, Statzner B (1998) Biomonitoring through biological traits of benthic macroinvertebrates: perspectives for a general tool in stream management. Arch Fur Hydrobiol 142:415–432

    Google Scholar 

  • Chen C, Liu H, Beardsley R (2003) An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J At Ocean Technol 20:159–186

    Article  Google Scholar 

  • Chevenet F, Dolédec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309

    Article  Google Scholar 

  • Cochran WG (1977) Sampling techniques, 3rd edn. Wiley, New York

    Google Scholar 

  • Commito JA, Celano EA, Celico HJ, Como S, Johnson CP (2005) Mussels matter: postlarval dispersal dynamics altered by a spatially complex ecosystem engineer. J Exp Mar Biol Ecol 316:133–147. doi:10.1016/j.jembe.2004.10.010

    Article  Google Scholar 

  • Damuth JD (1992) Taxon-free characterization of animal communities. In: Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues H, Wing SL (eds) Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago, pp 183–203

    Google Scholar 

  • De Roos AM, Persson L, McCauley E (2003) The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecol Lett 6:473–487. doi:10.1046/j.1461-0248.2003.00458.x

    Article  Google Scholar 

  • Defeo O, McLachlan A (2011) Coupling between macrofauna community structure and beach type: a deconstructive meta-analysis. Mar Ecol Prog Ser 433:29–41. doi:10.3354/meps09206

    Article  Google Scholar 

  • Defeo O, McLachlan A (2013) Global patterns in sandy beach macrofauna: species richness, abundance, biomass and body size. Geomorphology 199:106–114. doi:10.1016/j.geomorph.2013.04.013

    Article  Google Scholar 

  • Denny M, Wethey D (2001) Physical processes that generate patterns in marine communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland, pp 3–37

    Google Scholar 

  • Dolbeth M, Raffaelli D, Pardal MÂ (2014) Patterns in estuarine macrofauna body size distributions: the role of habitat and disturbance impact. J Sea Res 85:404–412. doi:10.1016/j.seares.2013.07.012

    Article  Google Scholar 

  • Donadi S, van der Heide T, van der Zee EM, Eklöf JS, van de Koppel J, Weerman EJ, Piersma T, Olff H, Eriksson BK (2013) Cross-habitat interactions among bivalve species control community structure on intertidal flats. Ecology 94:489–498

    Article  Google Scholar 

  • Donadi S, van der Zee EM, van der Heide T, Weerman EJ, Piersma T, van de Koppel J, Olff H, Bartelds M, van Gerwen I, Eriksson BK (2014) The bivalve loop: intra-specific facilitation in burrowing cockles through habitat modification. J Exp Mar Biol Ecol 461:44–52. doi:10.1016/j.jembe.2014.07.019

    Article  Google Scholar 

  • Eckman JE (1983) Hydrodynamic processes affecting benthic recruitment. Limnol Oceanogr 28:241–257

    Article  Google Scholar 

  • Edgar GJ, Shaw C, Watson GF, Hammond LS (1994) Comparisons of species richness, size-structure and production of benthos in vegetated and unvegetated habitats in Western Port, Victoria. J Exp Mar Biol Ecol 176(2):201–226

    Article  Google Scholar 

  • Emmerson MC, Raffaelli D (2004) Predator-prey body size, interaction strength and the stability of a real food web. J Anim Ecol 73:399–409. doi:10.1111/j.0021-8790.2004.00818.x

    Article  Google Scholar 

  • Eriksson BK, Heide T, van de Koppel J, Piersma T, van der Weer HW, Olff H (2010) Major changes in the ecology of the Wadden Sea: human impacts, ecosystem engineering and sediment dynamics. Ecosystems 13:752–764. doi:10.1007/s10021-010-9352-3

    Article  CAS  Google Scholar 

  • Etienne RS, de Visser SN, Janzen T, Olsen JL, Olff H, Rosindell J (2012) Can clade age alone explain the relationship between body size and diversity? Interface focus 2:170–179

    Article  Google Scholar 

  • Gatz D, Smith L (1995) The standard error of a weighted mean concentration—1. Bootstrapping vs other methods. Atmos Environ 29:1185–1193

    Article  CAS  Google Scholar 

  • Gee JM, Warwick RM (1994) Metazoan community structure in relation to the fractal dimensions of marine macroalgae. Mar Ecol Prog Ser 103:141–150

    Article  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251. doi:10.1126/science.1061967

    Article  CAS  Google Scholar 

  • Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev Camb Philos Soc 41:587–640

    Article  CAS  Google Scholar 

  • Graf G, Rosenberg R (1997) Bioresuspension and biodeposition: a review. J Mar Syst 11:269–278

    Article  Google Scholar 

  • Hacker S, Steneck R (1990) Habitat architecture and the abundance and body-size-dependent habitat selection of a phytal amphipod. Ecology 71:2269–2285

    Article  Google Scholar 

  • Holling C (1992) Cross-scale morphology, geometry, and dynamics of ecosystems. Ecosyst Manag 62:447–502

    Google Scholar 

  • Hrbacek J, Dvorakova M, Korinek V, Prochazkova L (1961) Demonstration of the effect of the fish stock on the species composition of the zooplankton and the intensity of metabolism of the whole plankton association. Verhandlungen der Int Vereinigung fiir Theore- tische und Angew Limnol 14:192–195

    Google Scholar 

  • Jones D, Frid CLJ (2009) Altering intertidal sediment topography: effects on biodiversity and ecosystem functioning. Mar Ecol 30:83–96. doi:10.1111/j.1439-0485.2009.00306.x

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Kleibert M (1932) Body size and metabolism. Hilgardia 6:315–352

    Article  Google Scholar 

  • Koehl M (1996) When does morphology matter? Annu Rev Ecol Syst 27:501–542

    Article  Google Scholar 

  • Kösters F, Winter C (2014) Exploring German Bight coastal morphodynamics based on modelled bed shear stress. Geo-Mar Lett 34:21–36. doi:10.1007/s00367-013-0346-y

    Article  Google Scholar 

  • Kröncke I (1996) Impact of biodeposition on macrofaunal communities in intertidal sandflats. Mar Ecol 17:159–174

    Article  Google Scholar 

  • Leaper R, Raffaelli D, Emes C, Manly B (2001) Constraints on body-size distributions: an experimental test of the habitat architecture hypothesis. J Anim Ecol 70:248–259

    Article  Google Scholar 

  • Lettmann KA, Wolff O-J, Badewien TH (2009) Modeling the impact of wind and waves on suspended particulate matter fluxes in the East Frisian Wadden Sea (southern North Sea). Ocean Dyn Spec Issue Biogeochem tidal flats 59:239–262

    Google Scholar 

  • Litchman E, Klausmeier C (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639

    Article  Google Scholar 

  • Losi V, Moreno M, Gaozza L, Vezzulli L, Fabiano M, Albertelli G (2013) Nematode biomass and allometric attributes as indicators of environmental quality in a Mediterranean harbour (Ligurian Sea, Italy). Ecol Indic 30:80–89. doi:10.1016/j.ecolind.2013.01.034

    Article  CAS  Google Scholar 

  • MacDonald TA, Burd BJ, van Roodselaar A (2012) Size structure of marine soft-bottom macrobenthic communities across natural habitat gradients: implications for productivity and ecosystem function. PLoS ONE 7:e40071. doi:10.1371/journal.pone.0040071

    Article  CAS  Google Scholar 

  • Marquet PA, Quiñones RA, Abades S, Labra F, Tognelli M, Arim M, Rivadeneira M (2005) Scaling and power-laws in ecological systems. J Exp Biol 208:1749–1769. doi:10.1242/jeb.01588

    Article  Google Scholar 

  • McLachlan A, Dorvlo A (2007) Global patterns in sandy beach macrobenthic communities: biological factors. J Coast Res 235:1081–1087. doi:10.2112/04-0408.1

    Article  Google Scholar 

  • Mills EL, Green DM, Schiavone A (1987) Use of zooplankton size to assess the community structure of fish populations in freshwater lakes. North Am J Fish Manag 7:369–378

    Article  Google Scholar 

  • Montgomery DC, Peck EA (1992) Introduction to linear regression analysis. Wiley, New York

    Google Scholar 

  • Mouillot D, Spatharis S, Reizopoulou S, Laugier T, Sabetta L, Basset A, Do Chi T (2006) Alternatives to taxonomic-based approaches to assess changes in transitional water communities. Aquat Conserv Mar Freshw Ecosyst 16:469–482. doi:10.1002/aqc.769

    Article  Google Scholar 

  • Parry DM, Kendall MA, Rowden AA, Widdicombe S (1999) Species body size distribution patterns of marine benthic macrofauna assemblages from contrasting sediment types. J Mar Biol Assoc UK 79:793–801. doi:10.1017/S0025315499000971

    Article  Google Scholar 

  • Pennings S (1990) Predator-prey interactions in opisthobranch gastropods: effects of prey body size and habitat complexity. Mar Ecol Prog Ser 62:95–101

    Article  Google Scholar 

  • Peters R (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pinna M, Marini G, Rosati I, Neto JM, Patrício J, Marques JC, Basset A (2013) The usefulness of large body-size macroinvertebrates in the rapid ecological assessment of Mediterranean lagoons. Ecol Indic 29:48–61. doi:10.1016/j.ecolind.2012.12.011

    Article  Google Scholar 

  • Pinna M, Marini G, Mancinelli G, Basset A (2014) Influence of sampling effort on ecological descriptors and indicators in perturbed and unperturbed conditions: a study case using benthic macroinvertebrates in Mediterranean transitional waters. Ecol Indic 37:27–39. doi:10.1016/j.ecolind.2013.09.038

    Article  Google Scholar 

  • Raffaelli D, Hall S, Emes C, Manly B (2000) Constraints on body size distributions: an experimental approach using a small-scale system. Oecologia 122:389–398

    Article  Google Scholar 

  • Reizopoulou S, Nicolaidou A (2007) Index of size distribution (ISD): a method of quality assessment for coastal lagoons. Hydrobiologia 577:141–149. doi:10.1007/s10750-006-0423-6

    Article  Google Scholar 

  • Robson BJ, Barmuta LA, Fairweather PG (2005) Methodological and conceptual issues in the search for a relationship between animal body-size distributions and benthic habitat architecture. Mar Freshw Res 56:1. doi:10.1071/MF04210

    Article  Google Scholar 

  • Schmid P (2000) Fractal properties of habitat and patch structure in benthic ecosystems. Adv Ecol Res 30:339–401

    Article  Google Scholar 

  • Schmid P, Tokeshi M, Schmid-Araya J (2002) Scaling in stream communities. Proc R Soc B Biol Sci 269:2587–2594

    Article  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling. Why is animal size so important? Cambridge University Press, New York

  • Schwinghamer P (1981) Characteristic size distributions of integral benthic communities. Can J Fish Aquat Sci 38:1255–1263

    Article  Google Scholar 

  • Solan M, Cardinale BJ, Downing AL et al (2004) Extinction and ecosystem function in the marine benthos. Science 306:1177–1180. doi:10.1126/science.1103960

    Article  CAS  Google Scholar 

  • Šorf M, Brandl Z, Znachor P, Vašek M (2014) Different effects of planktonic invertebrate predators and fish on the plankton community in experimental mesocosms. Ann Limnol Int J Limnol 50:71–83. doi:10.1051/limn/2014001

    Article  Google Scholar 

  • Soulsby R (1997) Dynamics of marine sands: a manual for practical applications. Thomas Telford, London

    Google Scholar 

  • Sprules WG, Munawar M (1986) Plankton size spectra in relation to ecosystem productivity, size and perturbation. Can J Fish Aquat Sci 43:1789–1794

    Article  Google Scholar 

  • Strayer DL (1991) Perspectives on the size structure of lacustrine zoobenthos, its causes, and its consequences. J North Am Benthol Soc 10:210–221. doi:10.2307/1467579

    Article  Google Scholar 

  • Ter Braak CJF, Smilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user’s Guide: software for Canonical community ordination (ver. 4.5). Microcomputer Power, New York

    Google Scholar 

  • Thiel H (1975) The size-structure of the deep-sea benthos. Int Rev Gesamt Hydrobiol 60:575–606

    Google Scholar 

  • Tokeshi M, Arakaki S (2012) Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685:27–47. doi:10.1007/s10750-011-0832-z

    Article  Google Scholar 

  • Volkenborn N, Reise K (2007) Effects of Arenicola marina on polychaete functional diversity revealed by large-scale experimental lugworm exclusion. J Sea Res 57:78–88. doi:10.1016/j.seares.2006.08.002

    Article  Google Scholar 

  • Warner JC, Sherwood CR, Signell RP, Harris CK, Arango HG (2008) Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput Geosci 34:1284–1306. doi:10.1016/j.cageo.2008.02.012

    Article  Google Scholar 

  • Warwick RM (1984) Species size distributions in marine benthic communities. Oecologia 61:32–41

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126. doi:10.1126/science.276.5309.122

    Article  CAS  Google Scholar 

  • Widdows J, Brinsley M (2002) Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. J Sea Res 48:143–156. doi:10.1016/S1385-1101(02)00148-X

    Article  Google Scholar 

  • Wigley R, McIntyre A (1964) Some quantitative comparisons of offshore meiobenthos and macrobenthos south of Martha’s Vineyard. Limnol Oceanogr 9:485–493

    Article  Google Scholar 

  • Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trends Ecol Evol 20:402–409. doi:10.1016/j.tree.2005.04.005

    Article  Google Scholar 

  • Wright J, Jones C, Flecker A (2002) An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132:96–101. doi:10.1007/s00442-002-0929-1

    Article  Google Scholar 

  • Yamanaka T, White PCL, Spencer M, Raffaelli D (2012) Patterns and processes in abundance-body size relationships for marine benthic invertebrates. J Anim Ecol 81:463–471. doi:10.1111/j.1365-2656.2011.01921.x

    Article  Google Scholar 

  • Zeuthen E (1953) Oxygen uptake as related to body size in organisms. Q Rev Biol 28:1–12

    Article  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:1–12. doi:10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Lower Saxony Water Management, Coastal Defence and Nature Conservation Agency and the National Park “Niedersächsisches Wattenmeer” for providing the data and Professor Dr Changsheng Chen, Dr Jianhua Qi and the MEDM research group in SMAST-University of Massachusetts Dartmouth for providing the FVCOM source codes and advisory help. We thank two anonymous reviewers for helpful comments on earlier drafts of this manuscript. This study was financed by fellowship to SD from the Hanse-Wissenschaftkolleg—Institute for Advanced Study, to which we are very grateful. HH and DH were financed by the Lower Saxony Ministry for Environment and Climate Protection and the Lower Saxony Ministry for Science and Culture as part of the collaborative research project WiMo (“Wissenschaftliche Monitoringkonzepte für die Deutsche Bucht”). The contribution of Karsten Lettmann was partly supported by the KLIFF research project (“Climate impact and adaptation research in Lower Saxony” funded by the Ministry of Science and Culture of Lower Saxony). The FVCOM model simulations were performed on the massive parallel computer clusters of The North-German Supercomputing Alliance (HLRN, Berlin/Hannover) and the DFG-funded High-Performance-Computing-Cluster (HPC-Cluster) located at the University of Oldenburg.

Conflict of interest

Serena Donadi, Britas Klemens Eriksson, Karsten Alexander Lettmann, Dorothee Hodapp, Jörg-Olaf Wolff and Helmut Hillebrand declare that they have no conflict of interest. All institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Donadi.

Additional information

Communicated by F. Bulleri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 149 kb)

Supplementary material 2 (PDF 372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donadi, S., Eriksson, B.K., Lettmann, K.A. et al. The body-size structure of macrobenthos changes predictably along gradients of hydrodynamic stress and organic enrichment. Mar Biol 162, 675–685 (2015). https://doi.org/10.1007/s00227-015-2614-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2614-z

Keywords

Navigation