Skip to main content

Advertisement

Log in

Foraging ecology of silky sharks, Carcharhinus falciformis, captured by the tuna purse-seine fishery in the eastern Pacific Ocean

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Diet studies are an essential component of ecosystem-based approaches to fisheries management. In the eastern Pacific Ocean (EPO), the silky shark (Carcharhinus falciformis) is the most common species of shark in the bycatch of the tuna purse-seine fishery. A rare, comprehensive dataset of stomach contents of 786 silky sharks sampled in mostly tropical regions of the EPO (25°N–15°S; 79°W–162°W) during 1992–1994 and 2003–2005 was analyzed via classification tree and quantile regression methodologies to gain insight into its ecosystem role. Results suggest that the silky shark is an opportunistic predator that forages on a variety of prey. Broad-scale spatial and shark size covariates explained the feeding habits of silky sharks captured in sets on floating objects, primarily drifting fish-aggregating devices (FADs). A strong spatial shift in diet was identified by the tree analysis, with different foraging patterns in the eastern (inshore) and western (offshore) regions. Greater proportions of FAD-associated prey than non-FAD-associated prey were observed in the diet throughout the EPO, with the greatest proportion in the offshore region. Thus, silky sharks appear to take advantage of the associative behavior of prey fishes to increase their probability of encountering and capturing prey. Evaluation of prey–predator size relationships showed that maximum prey size increased with increasing silky shark size, but minimum prey size remained relatively constant across the range of shark sizes. Results such as these from spatially oriented analyses of predator feeding habits are essential for populating ecosystem models with space-based food webs, which otherwise suffer from generic representations of food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aires-da-Silva A, Lennert-Cody C, Maunder M, Román-Verdesoto M (2014) Stock status indicators for silky sharks in the eastern Pacific Ocean: Document SAC-05-11a Inter-American Tropical Tuna Commission Scientific Advisory Committee Fifth Meeting. Inter-Amer Trop Tuna Comm, La Jolla, CA

  • Allen GR, Robertson DR (1994) Fishes of the tropical eastern Pacific. University of Hawaii Press, Honolulu

    Google Scholar 

  • Arenas P, Hall M, Garcia M (1999) Association of fauna with floating objects in the eastern Pacific Ocean. In: Scott MD, Bayliff WH, Lennert-Cody CE, Schaefer KM (eds) Proceedings of the international workshop on the ecology and fisheries for tunas associated with floating objects. Inter-Amer Trop Tuna Comm Special report 11, pp 285–326

  • Barnes C, Maxwell D, Reuman DC, Jennings S (2010) Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91:222–232. doi:10.1890/08-2061.1

    Article  Google Scholar 

  • Barnes C, Irigoien X, De Oliveira JAA, Maxwell D, Jennings S (2011) Predicting marine phytoplankton community size structure from empirical relationships with remotely sensed variables. J Plankton Res 33:13–24. doi:10.1093/plankt/fbq088

    Article  CAS  Google Scholar 

  • Barranco SLM (2008) Food habits and trophic level from the silky shark, Carcharhinus falciformis, Mûller & Henle 1841 (Elasmobranchii: Carcharhinidae) in the Gulf of Tehuantepec, México using stomach contents and stable isotopes of δ13C and δ15N. Master thesis, Universidad del Mar, Oaxaca

  • Baum JK, Worm B (2009) Cascading top-down effects of changing oceanic predator abundances. J Anim Ecol 78:699–714. doi:10.1111/j.1365-2656.2009.01531.x

    Article  Google Scholar 

  • Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755. doi:10.1038/nature05317

    Article  CAS  Google Scholar 

  • Bethea DM, Buckel JA, Carlson JK (2004) Foraging ecology of the early life stages of four sympatric shark species. Mar Ecol Prog Ser 268:245–264. doi:10.3354/meps268245

    Article  Google Scholar 

  • Bocanegra-Castillo N (2007) Relaciones tróficas de los peces pelágicos asociados a la pesquería del atún en el Océano Pacífico oriental. Dissertation, Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz

  • Bonfil R (2008) The biology and ecology of the silky shark, Carcharhinus falciformis. In: Camhi MD, Pikitch EK, Babcock EA (eds) Sharks of the open ocean. Blackwell, Oxford, pp 114–127. doi:10.1002/9781444302516.ch10

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, California

    Google Scholar 

  • Brusca R (1980) Common intertidal invertebrates of the Gulf of California. University of Arizona Press, Tuscon

    Google Scholar 

  • Cabrera CCA (2000) Determination of the food habits of Carcharhinus falciformis, Sphyrna lewini and Nasolamia velox (Carcharhiniformes: Carcharhinidae) during spring and summer season, through stomach content analysis in the Gulf of Tehuantepec, Mexico. Bachelor Thesis, Universidad Nacional Autónoma México (UNAM), Mexico

  • Cabrera-Chávez-Costa AA, Galván-Magaña F, Escobar-Sánchez O (2010) Food habits of the silky shark Carcharhinus falciformis (Müller & Henle, 1839) off the western coast of Baja California Sur, Mexico. J Appl Ichthyol 26:499–503. doi:10.1111/j.1439-0426.2010.01482.x

    Article  Google Scholar 

  • Cade BS, Terrell JW, Schroeder RL (1999) Estimating effects of limiting factors with regression quantiles. Ecology 80:311–323. doi:10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2

    Article  Google Scholar 

  • Caron DA, Hutchins DA (2013) The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J Plankton Res 35:235–252. doi:10.1093/plankt/fbs091

    Article  Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639. doi:10.2307/1309989

    Article  Google Scholar 

  • Chipps SR, Garvey JE (2007) Assessment of diets and feeding patterns. In: Guy CS, Brown ML (eds) Analysis and interpretation of freshwater fisheries data. American Fisheries Society, Maryland, pp 473–514

    Google Scholar 

  • Christensen V, Pauly D (1992) Ecopath II: a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Model 61:169–185. doi:10.1016/0304-3800(92)90016-8

    Article  Google Scholar 

  • Clarke MR (1962) The identification of cephalopod “beaks” and the relationship between beak size and total body weight. Bull Br Mus (Nat Hist) Zool 8:419–480

    Google Scholar 

  • Clarke MR (1986) A handbook for the identification of cephalopod beaks. Oxford University Press, Oxford

    Google Scholar 

  • Clothier CR (1950) A key to some southern California fishes based on vertebral characters. Calif Dep Fish Game Fish Bull 79:1–83

    Google Scholar 

  • Compagno L (1984) FAO species catalogue, vol 4. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. FAO, Rome

    Google Scholar 

  • Cortés E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci 56:707–717. doi:10.1006/jmsc.1999.0489

    Article  Google Scholar 

  • Costa GC (2009) Predator size, prey size, and dietary niche breadth relationships in marine predators. Ecology 90:2014–2019. doi:10.1890/08-1150.1

    Article  Google Scholar 

  • Cox SP, Essington TE, Kitchell JF, Martell SJD, Walters CJ, Boggs C, Kaplan I (2002) Reconstructing ecosystem dynamics in the central Pacific Ocean, 1952–1998. II. A preliminary assessment of the trophic impacts of fishing and effects on tuna dynamics. Can J Fish Aquat Sci 59:1736–1747. doi:10.1139/f02-138

    Article  Google Scholar 

  • Cury P, Bakun A, Crawford RJM, Jarre A, Quiñones RA, Shannon LJ, Verheye HM (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J Mar Sci 57:603–618. doi:10.1006/jmsc.2000.0712

    Article  Google Scholar 

  • Dagorn L, Fréon P (1999) Tropical tuna associated with floating objects: a simulation study of the meeting point hypothesis. Can J Fish Aquat Sci 56:984–993. doi:10.1139/f98-209

    Google Scholar 

  • Dagorn L, Bez N, Fauvel T, Walker E (2013) How much do fish aggregating devices (FADs) modify the floating object environment in the ocean? Fish Oceanogr 22:147–153. doi:10.1111/fog.12014

    Article  Google Scholar 

  • Deudero S (2001) Interspecific trophic relationships among pelagic fish species underneath FADs. J Fish Biol 58:53–67. doi:10.1111/j.1095-8649.2001.tb00498.x

    Article  Google Scholar 

  • Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4(4):11–37. doi:10.1146/annurev-marine-041911-111611

    Article  Google Scholar 

  • Essington TE, Hansson S (2004) Predator-dependent functional responses and interaction strengths in a natural food web. Can J Fish Aquat Sci 61:2215–2226. doi:10.1139/f04-146

    Article  Google Scholar 

  • Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK (2010) Patterns and ecosystem consequences of shark declines in the ocean. Ecol Lett 13:1055–1071. doi:10.1111/j.1461-0248.2010.01489.x

    Google Scholar 

  • Figueroa-Zúñiga JI, Arellano-Valle RB, Ferrari SLP (2012) Mixed beta regression: a bayesian perspective. Comput Stat Data Anal 61:137–147. doi:10.1016/j.csda.2012.12.002

    Article  Google Scholar 

  • Filmalter JD, Dagorn L, Cowley PD, Taquet M (2011) First descriptions of the behavior of silky sharks, Carcharhinus falciformis, around drifting fish aggregating devices in the Indian Ocean. Bull Mar Sci 87:325–337. doi:10.5343/bms.2010.1057

    Article  Google Scholar 

  • Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (1995a) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Volumen I. Plantas e invertebrados. FAO (UN Food and Agriculture Organization), Rome

    Google Scholar 

  • Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (1995b) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Volumen II. Vertebrados - Parte 1. FAO (UN Food and Agriculture Organization), Rome

    Google Scholar 

  • Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (1995c) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Volumen III. Vertebrados - Parte 2. FAO (UN Food and Agriculture Organization), Rome

    Google Scholar 

  • Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1621–1623. doi:10.1126/science.1113075

    Article  CAS  Google Scholar 

  • Fulton EA, CSIRO, Australian Fisheries Management Authority (2004) Ecological indicators of the ecosystem effects of fishing: final report. Australian Fisheries Management Authority, Hobart, CSIRO, Canberra

    Google Scholar 

  • Galván-Magaña F, Nienhuis H, Klimley P (1989) Seasonal abundance and feeding habits of sharks of the lower Gulf of California, Mexico. Calif Fish Game 75:74–84

    Google Scholar 

  • Garth J, Stephenson W (1966) Brachyura of the Pacific coast of America, Brachyrhyncha: Portunidae. Allan Hancock Monographs in Marine Biology, vol 1. Allan Hancock Foundation, University of Southern California

  • Geraci M (2013) lqmm: linear quantile mixed models. R package version 103. http://CRANR-project.org/package=lqmm

  • Geraci M, Bottai M (2013) Linear quantile mixed models. Stat Comput. doi:10.1007/s11222-013-9381-9

    Google Scholar 

  • Gerrodette T, Olson R, Reilly S, Watters G, Perrin W (2012) Ecological metrics of biomass removed by three methods of purse-seine fishing for tunas in the eastern tropical Pacific Ocean. Conserv Biol 26:248–256. doi:10.1111/j.1523-1739.2011.01817.x

    Article  Google Scholar 

  • Hall MA (1998) An ecological view of the tuna-dolphin problem: impacts and trade-offs. Rev Fish Biol Fish 8:1–34. doi:10.1023/A:1008854816580

    Article  Google Scholar 

  • Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol. doi:10.1016/j.tree.2005.03.004

    Google Scholar 

  • Heithaus MR, Frid A, Wirsing AJ, Worm B (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–210. doi:10.1016/j.tree.2008.01.003

    Article  Google Scholar 

  • Heupel MR, Knip DM, Simpfendorfer CA, Dulvy NK (2014) Sizing up the ecological role of sharks as predators. Mar Ecol Prog Ser 495:291–298. doi:10.3354/meps10597

    Article  Google Scholar 

  • Hinman K (1998) Ocean roulette: conserving swordfish, sharks and other threatened pelagic fish in longline-infested waters. National Coalition for Marine Conservation, Virginia

    Google Scholar 

  • Hunsicker M, Olson R, Essington T, Maunder M, Duffy L, Kitchell J (2012) The potential for top-down control on tropical tunas based on size structure of predator–prey interactions. Mar Ecol Prog Ser 445:263–277. doi:10.3354/meps09494

    Article  Google Scholar 

  • Hunter JR, Mitchell CHT (1966) Associations of fishes with flotsam in the offshore waters of Central America. US Natl Mar Fish Serv Fish Bull 66:13–29

    Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211. doi:10.2307/1942661

    Article  Google Scholar 

  • IATTC (2013) Tunas and billfishes in the eastern Pacific Ocean in 2012. Inter-Amer Trop Tuna Comm Fishery status report 11, p 171

  • Iverson ILK, Pinkas L (1971) A pictorial guide to beaks of certain eastern Pacific cephalopods. Calif Dep Fish Game Fish Bull 152:83–105

    Google Scholar 

  • Jordan DS, Evermann BW (1896) The fishes of North and Middle America: a descriptive catalogue of the species of fish-like vertebrates found in the waters of North America, north of the Isthmus of Panama. Smithsonian Institution Bull US Natl Mus, Washington (Reprinted 1963, TFH Publications, Jersey City)

  • Juanes F (2003) The allometry of cannibalism in piscivorous fishes. Can J Fish Aquat Sci 60:594–602. doi:10.1139/f03-051

    Article  Google Scholar 

  • Karpouzi VS, Stergiou KI (2003) The relationships between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. J Fish Biol 62:1353–1365. doi:10.1046/j.1095-8649.2003.00118.x

    Article  Google Scholar 

  • Kitchell JF, Essington TE, Boggs CH, Schindler DE, Walters CJ (2002) The role of sharks and longline fisheries in a pelagic ecosystem of the central Pacific. Ecosystems 5:202–216. doi:10.1007/s10021-001-0065-5

    Article  Google Scholar 

  • Koenker R, Basset G (1978) Regression quantiles. Econometrica 46:33–50. doi:10.2307/1913643

    Article  Google Scholar 

  • Kuhnert P, Duffy L, Young J, Olson R (2012) Predicting fish diet composition using a bagged classification tree approach: a case study using yellowfin tuna (Thunnus albacares). Mar Biol. doi:10.1007/s00227-011-1792-6

    Google Scholar 

  • Lucifora L, García V, Menni R, Escalante A, Hozbor N (2009) Effects of body size, age and maturity stage on diet in a large shark: ecological and applied implications. Ecol Res 24:109–118. doi:10.1007/s11284-008-0487-z

    Article  Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure and extensibility. Stat Comput 10:325–337. doi:10.1023/A:1008929526011

    Article  Google Scholar 

  • Magnuson JJ, Heitz JG (1971) Gill raker apparatus and food selectivity among mackerels, tunas and dolphins. US Natl Mar Fish Serv Fish Bull 69:361–370

    Google Scholar 

  • Marasco RJ, Goodman D, Grimes CB, Lawson PW, Punt AE, Quinn TJI (2007) Ecosystem-based fisheries management: some practical suggestions. Can J Fish Aquat Sci 64:928–939. doi:10.1139/f07-062

    Article  Google Scholar 

  • Marsac F, Fonteneau A, Ménard F (2000) Drifting FADs used in tuna fisheries: an ecological trap? In: Le Gall JY, Cayré P, Taquet M (eds) Pêche thonière et dispositifs de concentration de poissons, Ed. Ifremer, Actes Colloq., vol 28, pp 537–552

  • Matich P, Heithaus MR, Layman CA (2011) Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J Anim Ecol 80:294–305. doi:10.1111/j.1365-2656.2010.01753.x

    Article  Google Scholar 

  • McClanahan TR, Arthur R (2001) The effect of marine reserves and habitat on populations of East African coral reef fishes. Ecol Appl 11:559–569. doi:10.1890/1051-0761(2001)011[0559:TEOMRA]2.0.CO;2

    Article  Google Scholar 

  • Meek SE, Hildebrand SF (1923) The marine fishes of Panama. Part I. Field Mus (Natl Hist) Zool Ser Chic. doi:10.5962/bhl.title.2887

    Google Scholar 

  • Ménard F, Fonteneau A, Gaertner D, Nordstrom V, Stéquert B, Marchal E (2000) Exploitation of small tunas by a purse-seine fishery with fish aggregating devices and their feeding ecology in an eastern tropical Atlantic ecosystem. ICES J Mar Sci 57:525–530. doi:10.1006/jmsc.2000.0717

    Article  Google Scholar 

  • Ménard F, Labrune C, Shin Y-J, Asine A-S, Bard F-X (2006) Opportunistic predation in tuna: a size-based approach. Mar Ecol Prog Ser 323:223–231. doi:10.3354/meps323223

    Article  Google Scholar 

  • Miller DL, Jorgenson SC (1973) Meristic characters of some marine fishes of the western Atlantic Ocean. US Fish Wildl Serv Fish Bull 71:301–312

    Google Scholar 

  • Miller DJ, Lea RN (1972) Guide to the coastal marine fishes of California. Calif Dep Fish Game Fish Bull 157:1–249

    Google Scholar 

  • Minami M, Lennert-Cody CE, Gao W, Román-Verdesoto M (2007) Modeling shark bycatch: the zero-inflated negative binomial regression model with smoothing. Fish Res 84:210–221. doi:10.1016/j.fishres.2006.10.019

    Article  Google Scholar 

  • Monod J (1968) Le complexe urophore des poisons teleosteens. Mem Inst Fond Afr Noire 81:1–70

    Google Scholar 

  • Olson RJ, Galván-Magaña F (2002) Food habits and consumption rates of common dolphinfish (Coryphaena hippurus) in the eastern Pacific Ocean. US Natl Mar Fish Serv Fish Bull 100:279–298

    Google Scholar 

  • Olson RJ, Duffy LM, Kuhnert PM, Galván-Magaña F, Bocanegra-Castillo N, Alatorre-Ramirez V (2014) Decadal diet shift in yellowfin tuna (Thunnus albacares) suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Mar Ecol Prog Ser 497:157–178. doi:10.3354/meps10609

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488. doi:10.1016/S0169-5347(99)01723-1

    Article  Google Scholar 

  • Parin N (1961) The basis for the classification of the flying fishes (family Oxyporhamphidae and Exocoetidae). US Natl Mus NMFS Transl 67:104

    Google Scholar 

  • Pauly D, Christensen V, Walters C (2000) Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J Mar Sci 57:697–706. doi:10.1006/jmsc.2000.0726

    Article  Google Scholar 

  • Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, Doukakis P, Fluharty D, Heneman B, Houde ED, Link J, Livingston PA, Mangel M, McAllister MK, Pope J, Sainsbury KJ (2004) Ecosystem-based fishery management. Science 305:346–347. doi:10.1126/science.1098222

    Article  CAS  Google Scholar 

  • Pinnegar JK, Trenkel VM, Tidd AN, Dawson WA, Du Buit MH (2003) Does diet in Celtic Sea fishes reflect prey availability? J Fish Biol 63:197–212. doi:10.1111/j.1095-8649.2003.00204.x

    Article  Google Scholar 

  • Polovina JJ, Woodworth PA (2012) Declines in phytoplankton cell size in the subtropical oceans estimated from satellite remotely-sensed temperature and chlorophyll, 1998–2007. Deep Sea Res Part II 77–80:82–88. doi:10.1016/j.dsr2.2012.04.006

    Article  Google Scholar 

  • Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geophys Res Lett 35:L03618. doi:10.1029/2007gl031745

    Google Scholar 

  • Polovina J, Dunne J, Woodworth P, Howell E (2011) Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES J Mar Sci 68:986–995. doi:10.1093/icesjms/fsq198

    Article  Google Scholar 

  • Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46:609–620. doi:10.2307/1312990

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Román-Verdesoto M, Orozco-Zӧller M (2005) Bycatches of sharks in the tuna purse-seine fishery of the eastern Pacific Ocean reported by observers of the Inter-American Tropical Tuna Commission, 1993–2004. Inter Am Trop Tuna Comm Data Rep 11:67

    Google Scholar 

  • Sánchez-de Ita JA, Quiñónez-Velázquez C, Galván-Magaña F, Bocanegra-Castillo N, Félix-Uraga R (2011) Age and growth of the silky shark Carcharhinus falciformis from the west coast of Baja California Sur, Mexico. J Appl Ichthyol 27:20–24. doi:10.1111/j.1439-0426.2010.01569.x

    Article  Google Scholar 

  • Scharf FS, Juanes F, Sutherland M (1998) Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques. Ecology 79:448–460. doi:10.1890/0012-9658(1998)079[0448:ierfte]2.0.co;2

    Article  Google Scholar 

  • Scharf FS, Juanes F, Rountree RA (2000) Predator size–prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar Ecol Prog Ser 208:229–248. doi:10.3354/meps208229

    Article  Google Scholar 

  • Scott MD, Chivers SJ, Olson RJ, Fiedler PC, Holland K (2012) Pelagic predator associations: tuna and dolphins in the eastern tropical Pacific Ocean. Mar Ecol Prog Ser 458:283–302. doi:10.3354/meps09740

    Article  Google Scholar 

  • Seki MP, Polovina J (2001) Ocean gyre ecosystems. In: Steele JH, Turekian K, Thorpe S (eds) Encyclopedia of Ocean Sciences. Academic Press, London, pp 1959–1965

    Chapter  Google Scholar 

  • Smithson M, Verkuilen J (2006) A better lemon squeezer? Maximum likelihood regression with beta-distributed dependent variables. Psychol Methods 11:54–71. doi:10.1037/1082-989X.11.1.54

    Article  Google Scholar 

  • Stevens JD, Bonfil R, Dulvy NK, Walker PA (2000) The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J Mar Sci 57:476–494. doi:10.1006/jmsc.2000.0724

    Article  Google Scholar 

  • Stramma L, Johnson GC, Sprintall J, Mohrholz V (2008) Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–658. doi:10.1126/science.1153847

    Article  CAS  Google Scholar 

  • Stramma L, Schmidtko S, Levin LA, Johnson GC (2010) Ocean oxygen minima expansions and their biological impacts. Deep Sea Res Part I 57:587–595. doi:10.1016/j.dsr.2010.01.005

    Article  CAS  Google Scholar 

  • Stramma L, Prince ED, Schmidtko S, Luo J, Hoolihan JP, Visbeck M, Wallace DWR, Brandt P, Kortzinger A (2012) Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature 2:33–37. doi:10.1038/nclimate1304

    CAS  Google Scholar 

  • Therneau T, Atkinson B, Ripley B (2013) rpart: recursive partitioning. R package version 4.1-3. http://CRAN.R-project.org/package=rpart

  • Thomson DA, Findley LT, Kerstitch AN (1979) Reef fishes of the Sea of Cortez. Wiley, New York

    Google Scholar 

  • Walters C, Pauly D, Christensen V (1999) Ecospace: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2:539–554. doi:10.1007/s100219900101

    Article  Google Scholar 

  • Watson JT, Essington TE, Lennert-Cody CE, Hall MA (2009) Trade-offs in the design of fishery closures: management of silky shark bycatch in the eastern Pacific Ocean tuna fishery. Conserv Biol 23:626–635. doi:10.1111/j.1523-1739.2008.01121.x

    Article  Google Scholar 

  • Wolff CA (1982) A beak key for eight eastern tropical Pacific cephalopods species, with relationship between their beak dimensions and size. US Natl Mar Fish Serv Fish Bull 80:357–370

    Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC Press, New York

    Google Scholar 

  • Worm B, Myers RA (2003) Meta-analysis of cod-shrimp interactions reveals top-down control in oceanic food webs. Ecology 84:162–173. doi:10.1890/0012-9658(2003)084[0162:MAOCSI]2.0.CO;2

    Article  Google Scholar 

  • Worm B, Tittensor DP (2011) Range contraction in large pelagic predators. Proc Natl Acad Sci USA 108:11942–11947. doi:10.1073/pnas.1102353108

    Article  CAS  Google Scholar 

  • Young JW, Lansdell MJ, Campbell RA, Cooper SP, Juanes F, Guest MA (2010) Feeding ecology and niche segregation in oceanic top predators off eastern Australia. Mar Biol 157:2347–2368. doi:10.1007/s00227-010-1500-y

    Article  Google Scholar 

Download references

Acknowledgments

This project was partly funded by Cooperative Agreement NA17RJ1230 between the Joint Institute for Marine and Atmospheric Research (JIMAR) and the US National Oceanic and Atmospheric Administration (NOAA). The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subdivisions. This project was also partly supported by a special appropriation of the US Congress in 1992 for research leading to new methods of catching tuna without the incidental capture of dolphins. We also acknowledge the funding support from Commonwealth Scientific and Industrial Research Organization (CSIRO) through the Julius Award that was granted to P. Kuhnert. F. Galván-Magaña was supported by the Instituto Politécnico Nacional [Comisión de Operación y Fomento de Actividades Académicas (COFAA) and Estímulos al Desempeño de los Investigadores (EDI)], and N. Bocanegra-Castillo was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT). We are grateful to many observers in Ecuador, Venezuela, and Mexico for collecting stomach samples at sea, with the valuable assistance of Inter-American Tropical Tuna Commission (IATTC) staff E. Largacha, H. Pérez, K. Loor, V. Fuentes, C. de la A.-Florencia, A. Basante, W. Paladines, F. Cruz, and C. Maldonado and the captains and crews of numerous purse-seine vessels. Assistance with stomach-content analysis was provided in Ecuador by L. Cedeño, J. Morales, and M. Loor, and in Venezuela by J. Martinez. We also thank IATTC staff members A. Aires-da-Silva, for making the R code and resources available for producing the maps, C. Patnode, for modifying and improving the graphics, and D. Fuller, for assistance with figures. We thank W. Bayliff (IATTC) and J. Young (CSIRO) for their thoughtful, constructive reviews of this manuscript. We are grateful to the Integrated Marine Biogeochemistry and Ecosystem Research (IMBER, formerly GLOBEC) regional program Climate Impacts on Oceanic Top Predators (CLIOTOP) for sponsoring a workshop to develop Classification and Regression Tree (CART) methodologies for analyzing diet data for top predators on a global scale, with special thanks to F. Ménard and J. Young for their leadership.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leanne M. Duffy.

Additional information

Communicated by J. K. Carlson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duffy, L.M., Olson, R.J., Lennert-Cody, C.E. et al. Foraging ecology of silky sharks, Carcharhinus falciformis, captured by the tuna purse-seine fishery in the eastern Pacific Ocean. Mar Biol 162, 571–593 (2015). https://doi.org/10.1007/s00227-014-2606-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2606-4

Keywords

Navigation