Marine Biology

, Volume 162, Issue 3, pp 571–593 | Cite as

Foraging ecology of silky sharks, Carcharhinus falciformis, captured by the tuna purse-seine fishery in the eastern Pacific Ocean

  • Leanne M. DuffyEmail author
  • Robert J. Olson
  • Cleridy E. Lennert-Cody
  • Felipe Galván-Magaña
  • Noemi Bocanegra-Castillo
  • Petra M. Kuhnert
Original Paper


Diet studies are an essential component of ecosystem-based approaches to fisheries management. In the eastern Pacific Ocean (EPO), the silky shark (Carcharhinus falciformis) is the most common species of shark in the bycatch of the tuna purse-seine fishery. A rare, comprehensive dataset of stomach contents of 786 silky sharks sampled in mostly tropical regions of the EPO (25°N–15°S; 79°W–162°W) during 1992–1994 and 2003–2005 was analyzed via classification tree and quantile regression methodologies to gain insight into its ecosystem role. Results suggest that the silky shark is an opportunistic predator that forages on a variety of prey. Broad-scale spatial and shark size covariates explained the feeding habits of silky sharks captured in sets on floating objects, primarily drifting fish-aggregating devices (FADs). A strong spatial shift in diet was identified by the tree analysis, with different foraging patterns in the eastern (inshore) and western (offshore) regions. Greater proportions of FAD-associated prey than non-FAD-associated prey were observed in the diet throughout the EPO, with the greatest proportion in the offshore region. Thus, silky sharks appear to take advantage of the associative behavior of prey fishes to increase their probability of encountering and capturing prey. Evaluation of prey–predator size relationships showed that maximum prey size increased with increasing silky shark size, but minimum prey size remained relatively constant across the range of shark sizes. Results such as these from spatially oriented analyses of predator feeding habits are essential for populating ecosystem models with space-based food webs, which otherwise suffer from generic representations of food webs.


Quantile Regression Prey Size Full Dataset Yellowfin Tuna Eastern Pacific Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was partly funded by Cooperative Agreement NA17RJ1230 between the Joint Institute for Marine and Atmospheric Research (JIMAR) and the US National Oceanic and Atmospheric Administration (NOAA). The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subdivisions. This project was also partly supported by a special appropriation of the US Congress in 1992 for research leading to new methods of catching tuna without the incidental capture of dolphins. We also acknowledge the funding support from Commonwealth Scientific and Industrial Research Organization (CSIRO) through the Julius Award that was granted to P. Kuhnert. F. Galván-Magaña was supported by the Instituto Politécnico Nacional [Comisión de Operación y Fomento de Actividades Académicas (COFAA) and Estímulos al Desempeño de los Investigadores (EDI)], and N. Bocanegra-Castillo was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT). We are grateful to many observers in Ecuador, Venezuela, and Mexico for collecting stomach samples at sea, with the valuable assistance of Inter-American Tropical Tuna Commission (IATTC) staff E. Largacha, H. Pérez, K. Loor, V. Fuentes, C. de la A.-Florencia, A. Basante, W. Paladines, F. Cruz, and C. Maldonado and the captains and crews of numerous purse-seine vessels. Assistance with stomach-content analysis was provided in Ecuador by L. Cedeño, J. Morales, and M. Loor, and in Venezuela by J. Martinez. We also thank IATTC staff members A. Aires-da-Silva, for making the R code and resources available for producing the maps, C. Patnode, for modifying and improving the graphics, and D. Fuller, for assistance with figures. We thank W. Bayliff (IATTC) and J. Young (CSIRO) for their thoughtful, constructive reviews of this manuscript. We are grateful to the Integrated Marine Biogeochemistry and Ecosystem Research (IMBER, formerly GLOBEC) regional program Climate Impacts on Oceanic Top Predators (CLIOTOP) for sponsoring a workshop to develop Classification and Regression Tree (CART) methodologies for analyzing diet data for top predators on a global scale, with special thanks to F. Ménard and J. Young for their leadership.

Supplementary material

227_2014_2606_MOESM1_ESM.pdf (51 kb)
Supplementary material 1 (PDF 50 kb)


  1. Aires-da-Silva A, Lennert-Cody C, Maunder M, Román-Verdesoto M (2014) Stock status indicators for silky sharks in the eastern Pacific Ocean: Document SAC-05-11a Inter-American Tropical Tuna Commission Scientific Advisory Committee Fifth Meeting. Inter-Amer Trop Tuna Comm, La Jolla, CAGoogle Scholar
  2. Allen GR, Robertson DR (1994) Fishes of the tropical eastern Pacific. University of Hawaii Press, HonoluluGoogle Scholar
  3. Arenas P, Hall M, Garcia M (1999) Association of fauna with floating objects in the eastern Pacific Ocean. In: Scott MD, Bayliff WH, Lennert-Cody CE, Schaefer KM (eds) Proceedings of the international workshop on the ecology and fisheries for tunas associated with floating objects. Inter-Amer Trop Tuna Comm Special report 11, pp 285–326Google Scholar
  4. Barnes C, Maxwell D, Reuman DC, Jennings S (2010) Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91:222–232. doi: 10.1890/08-2061.1 CrossRefGoogle Scholar
  5. Barnes C, Irigoien X, De Oliveira JAA, Maxwell D, Jennings S (2011) Predicting marine phytoplankton community size structure from empirical relationships with remotely sensed variables. J Plankton Res 33:13–24. doi: 10.1093/plankt/fbq088 CrossRefGoogle Scholar
  6. Barranco SLM (2008) Food habits and trophic level from the silky shark, Carcharhinus falciformis, Mûller & Henle 1841 (Elasmobranchii: Carcharhinidae) in the Gulf of Tehuantepec, México using stomach contents and stable isotopes of δ13C and δ15N. Master thesis, Universidad del Mar, OaxacaGoogle Scholar
  7. Baum JK, Worm B (2009) Cascading top-down effects of changing oceanic predator abundances. J Anim Ecol 78:699–714. doi: 10.1111/j.1365-2656.2009.01531.x CrossRefGoogle Scholar
  8. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755. doi: 10.1038/nature05317 CrossRefGoogle Scholar
  9. Bethea DM, Buckel JA, Carlson JK (2004) Foraging ecology of the early life stages of four sympatric shark species. Mar Ecol Prog Ser 268:245–264. doi: 10.3354/meps268245 CrossRefGoogle Scholar
  10. Bocanegra-Castillo N (2007) Relaciones tróficas de los peces pelágicos asociados a la pesquería del atún en el Océano Pacífico oriental. Dissertation, Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La PazGoogle Scholar
  11. Bonfil R (2008) The biology and ecology of the silky shark, Carcharhinus falciformis. In: Camhi MD, Pikitch EK, Babcock EA (eds) Sharks of the open ocean. Blackwell, Oxford, pp 114–127. doi: 10.1002/9781444302516.ch10
  12. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, CaliforniaGoogle Scholar
  13. Brusca R (1980) Common intertidal invertebrates of the Gulf of California. University of Arizona Press, TusconGoogle Scholar
  14. Cabrera CCA (2000) Determination of the food habits of Carcharhinus falciformis, Sphyrna lewini and Nasolamia velox (Carcharhiniformes: Carcharhinidae) during spring and summer season, through stomach content analysis in the Gulf of Tehuantepec, Mexico. Bachelor Thesis, Universidad Nacional Autónoma México (UNAM), MexicoGoogle Scholar
  15. Cabrera-Chávez-Costa AA, Galván-Magaña F, Escobar-Sánchez O (2010) Food habits of the silky shark Carcharhinus falciformis (Müller & Henle, 1839) off the western coast of Baja California Sur, Mexico. J Appl Ichthyol 26:499–503. doi: 10.1111/j.1439-0426.2010.01482.x CrossRefGoogle Scholar
  16. Cade BS, Terrell JW, Schroeder RL (1999) Estimating effects of limiting factors with regression quantiles. Ecology 80:311–323. doi: 10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2 CrossRefGoogle Scholar
  17. Caron DA, Hutchins DA (2013) The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J Plankton Res 35:235–252. doi: 10.1093/plankt/fbs091 CrossRefGoogle Scholar
  18. Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639. doi: 10.2307/1309989 CrossRefGoogle Scholar
  19. Chipps SR, Garvey JE (2007) Assessment of diets and feeding patterns. In: Guy CS, Brown ML (eds) Analysis and interpretation of freshwater fisheries data. American Fisheries Society, Maryland, pp 473–514Google Scholar
  20. Christensen V, Pauly D (1992) Ecopath II: a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Model 61:169–185. doi: 10.1016/0304-3800(92)90016-8 CrossRefGoogle Scholar
  21. Clarke MR (1962) The identification of cephalopod “beaks” and the relationship between beak size and total body weight. Bull Br Mus (Nat Hist) Zool 8:419–480Google Scholar
  22. Clarke MR (1986) A handbook for the identification of cephalopod beaks. Oxford University Press, OxfordGoogle Scholar
  23. Clothier CR (1950) A key to some southern California fishes based on vertebral characters. Calif Dep Fish Game Fish Bull 79:1–83Google Scholar
  24. Compagno L (1984) FAO species catalogue, vol 4. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. FAO, RomeGoogle Scholar
  25. Cortés E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci 56:707–717. doi: 10.1006/jmsc.1999.0489 CrossRefGoogle Scholar
  26. Costa GC (2009) Predator size, prey size, and dietary niche breadth relationships in marine predators. Ecology 90:2014–2019. doi: 10.1890/08-1150.1 CrossRefGoogle Scholar
  27. Cox SP, Essington TE, Kitchell JF, Martell SJD, Walters CJ, Boggs C, Kaplan I (2002) Reconstructing ecosystem dynamics in the central Pacific Ocean, 1952–1998. II. A preliminary assessment of the trophic impacts of fishing and effects on tuna dynamics. Can J Fish Aquat Sci 59:1736–1747. doi: 10.1139/f02-138 CrossRefGoogle Scholar
  28. Cury P, Bakun A, Crawford RJM, Jarre A, Quiñones RA, Shannon LJ, Verheye HM (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J Mar Sci 57:603–618. doi: 10.1006/jmsc.2000.0712 CrossRefGoogle Scholar
  29. Dagorn L, Fréon P (1999) Tropical tuna associated with floating objects: a simulation study of the meeting point hypothesis. Can J Fish Aquat Sci 56:984–993. doi: 10.1139/f98-209 Google Scholar
  30. Dagorn L, Bez N, Fauvel T, Walker E (2013) How much do fish aggregating devices (FADs) modify the floating object environment in the ocean? Fish Oceanogr 22:147–153. doi: 10.1111/fog.12014 CrossRefGoogle Scholar
  31. Deudero S (2001) Interspecific trophic relationships among pelagic fish species underneath FADs. J Fish Biol 58:53–67. doi: 10.1111/j.1095-8649.2001.tb00498.x CrossRefGoogle Scholar
  32. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4(4):11–37. doi: 10.1146/annurev-marine-041911-111611 CrossRefGoogle Scholar
  33. Essington TE, Hansson S (2004) Predator-dependent functional responses and interaction strengths in a natural food web. Can J Fish Aquat Sci 61:2215–2226. doi: 10.1139/f04-146 CrossRefGoogle Scholar
  34. Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK (2010) Patterns and ecosystem consequences of shark declines in the ocean. Ecol Lett 13:1055–1071. doi: 10.1111/j.1461-0248.2010.01489.x Google Scholar
  35. Figueroa-Zúñiga JI, Arellano-Valle RB, Ferrari SLP (2012) Mixed beta regression: a bayesian perspective. Comput Stat Data Anal 61:137–147. doi: 10.1016/j.csda.2012.12.002 CrossRefGoogle Scholar
  36. Filmalter JD, Dagorn L, Cowley PD, Taquet M (2011) First descriptions of the behavior of silky sharks, Carcharhinus falciformis, around drifting fish aggregating devices in the Indian Ocean. Bull Mar Sci 87:325–337. doi: 10.5343/bms.2010.1057 CrossRefGoogle Scholar
  37. Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (1995a) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Volumen I. Plantas e invertebrados. FAO (UN Food and Agriculture Organization), RomeGoogle Scholar
  38. Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (1995b) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Volumen II. Vertebrados - Parte 1. FAO (UN Food and Agriculture Organization), RomeGoogle Scholar
  39. Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (1995c) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Volumen III. Vertebrados - Parte 2. FAO (UN Food and Agriculture Organization), RomeGoogle Scholar
  40. Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1621–1623. doi: 10.1126/science.1113075 CrossRefGoogle Scholar
  41. Fulton EA, CSIRO, Australian Fisheries Management Authority (2004) Ecological indicators of the ecosystem effects of fishing: final report. Australian Fisheries Management Authority, Hobart, CSIRO, CanberraGoogle Scholar
  42. Galván-Magaña F, Nienhuis H, Klimley P (1989) Seasonal abundance and feeding habits of sharks of the lower Gulf of California, Mexico. Calif Fish Game 75:74–84Google Scholar
  43. Garth J, Stephenson W (1966) Brachyura of the Pacific coast of America, Brachyrhyncha: Portunidae. Allan Hancock Monographs in Marine Biology, vol 1. Allan Hancock Foundation, University of Southern CaliforniaGoogle Scholar
  44. Geraci M (2013) lqmm: linear quantile mixed models. R package version 103.
  45. Geraci M, Bottai M (2013) Linear quantile mixed models. Stat Comput. doi: 10.1007/s11222-013-9381-9 Google Scholar
  46. Gerrodette T, Olson R, Reilly S, Watters G, Perrin W (2012) Ecological metrics of biomass removed by three methods of purse-seine fishing for tunas in the eastern tropical Pacific Ocean. Conserv Biol 26:248–256. doi: 10.1111/j.1523-1739.2011.01817.x CrossRefGoogle Scholar
  47. Hall MA (1998) An ecological view of the tuna-dolphin problem: impacts and trade-offs. Rev Fish Biol Fish 8:1–34. doi: 10.1023/A:1008854816580 CrossRefGoogle Scholar
  48. Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol. doi: 10.1016/j.tree.2005.03.004 Google Scholar
  49. Heithaus MR, Frid A, Wirsing AJ, Worm B (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–210. doi: 10.1016/j.tree.2008.01.003 CrossRefGoogle Scholar
  50. Heupel MR, Knip DM, Simpfendorfer CA, Dulvy NK (2014) Sizing up the ecological role of sharks as predators. Mar Ecol Prog Ser 495:291–298. doi: 10.3354/meps10597 CrossRefGoogle Scholar
  51. Hinman K (1998) Ocean roulette: conserving swordfish, sharks and other threatened pelagic fish in longline-infested waters. National Coalition for Marine Conservation, VirginiaGoogle Scholar
  52. Hunsicker M, Olson R, Essington T, Maunder M, Duffy L, Kitchell J (2012) The potential for top-down control on tropical tunas based on size structure of predator–prey interactions. Mar Ecol Prog Ser 445:263–277. doi: 10.3354/meps09494 CrossRefGoogle Scholar
  53. Hunter JR, Mitchell CHT (1966) Associations of fishes with flotsam in the offshore waters of Central America. US Natl Mar Fish Serv Fish Bull 66:13–29Google Scholar
  54. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211. doi: 10.2307/1942661 CrossRefGoogle Scholar
  55. IATTC (2013) Tunas and billfishes in the eastern Pacific Ocean in 2012. Inter-Amer Trop Tuna Comm Fishery status report 11, p 171Google Scholar
  56. Iverson ILK, Pinkas L (1971) A pictorial guide to beaks of certain eastern Pacific cephalopods. Calif Dep Fish Game Fish Bull 152:83–105Google Scholar
  57. Jordan DS, Evermann BW (1896) The fishes of North and Middle America: a descriptive catalogue of the species of fish-like vertebrates found in the waters of North America, north of the Isthmus of Panama. Smithsonian Institution Bull US Natl Mus, Washington (Reprinted 1963, TFH Publications, Jersey City)Google Scholar
  58. Juanes F (2003) The allometry of cannibalism in piscivorous fishes. Can J Fish Aquat Sci 60:594–602. doi: 10.1139/f03-051 CrossRefGoogle Scholar
  59. Karpouzi VS, Stergiou KI (2003) The relationships between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. J Fish Biol 62:1353–1365. doi: 10.1046/j.1095-8649.2003.00118.x CrossRefGoogle Scholar
  60. Kitchell JF, Essington TE, Boggs CH, Schindler DE, Walters CJ (2002) The role of sharks and longline fisheries in a pelagic ecosystem of the central Pacific. Ecosystems 5:202–216. doi: 10.1007/s10021-001-0065-5 CrossRefGoogle Scholar
  61. Koenker R, Basset G (1978) Regression quantiles. Econometrica 46:33–50. doi: 10.2307/1913643 CrossRefGoogle Scholar
  62. Kuhnert P, Duffy L, Young J, Olson R (2012) Predicting fish diet composition using a bagged classification tree approach: a case study using yellowfin tuna (Thunnus albacares). Mar Biol. doi: 10.1007/s00227-011-1792-6 Google Scholar
  63. Lucifora L, García V, Menni R, Escalante A, Hozbor N (2009) Effects of body size, age and maturity stage on diet in a large shark: ecological and applied implications. Ecol Res 24:109–118. doi: 10.1007/s11284-008-0487-z CrossRefGoogle Scholar
  64. Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure and extensibility. Stat Comput 10:325–337. doi: 10.1023/A:1008929526011 CrossRefGoogle Scholar
  65. Magnuson JJ, Heitz JG (1971) Gill raker apparatus and food selectivity among mackerels, tunas and dolphins. US Natl Mar Fish Serv Fish Bull 69:361–370Google Scholar
  66. Marasco RJ, Goodman D, Grimes CB, Lawson PW, Punt AE, Quinn TJI (2007) Ecosystem-based fisheries management: some practical suggestions. Can J Fish Aquat Sci 64:928–939. doi: 10.1139/f07-062 CrossRefGoogle Scholar
  67. Marsac F, Fonteneau A, Ménard F (2000) Drifting FADs used in tuna fisheries: an ecological trap? In: Le Gall JY, Cayré P, Taquet M (eds) Pêche thonière et dispositifs de concentration de poissons, Ed. Ifremer, Actes Colloq., vol 28, pp 537–552Google Scholar
  68. Matich P, Heithaus MR, Layman CA (2011) Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J Anim Ecol 80:294–305. doi: 10.1111/j.1365-2656.2010.01753.x CrossRefGoogle Scholar
  69. McClanahan TR, Arthur R (2001) The effect of marine reserves and habitat on populations of East African coral reef fishes. Ecol Appl 11:559–569. doi: 10.1890/1051-0761(2001)011[0559:TEOMRA]2.0.CO;2 CrossRefGoogle Scholar
  70. Meek SE, Hildebrand SF (1923) The marine fishes of Panama. Part I. Field Mus (Natl Hist) Zool Ser Chic. doi: 10.5962/bhl.title.2887 Google Scholar
  71. Ménard F, Fonteneau A, Gaertner D, Nordstrom V, Stéquert B, Marchal E (2000) Exploitation of small tunas by a purse-seine fishery with fish aggregating devices and their feeding ecology in an eastern tropical Atlantic ecosystem. ICES J Mar Sci 57:525–530. doi: 10.1006/jmsc.2000.0717 CrossRefGoogle Scholar
  72. Ménard F, Labrune C, Shin Y-J, Asine A-S, Bard F-X (2006) Opportunistic predation in tuna: a size-based approach. Mar Ecol Prog Ser 323:223–231. doi: 10.3354/meps323223 CrossRefGoogle Scholar
  73. Miller DL, Jorgenson SC (1973) Meristic characters of some marine fishes of the western Atlantic Ocean. US Fish Wildl Serv Fish Bull 71:301–312Google Scholar
  74. Miller DJ, Lea RN (1972) Guide to the coastal marine fishes of California. Calif Dep Fish Game Fish Bull 157:1–249Google Scholar
  75. Minami M, Lennert-Cody CE, Gao W, Román-Verdesoto M (2007) Modeling shark bycatch: the zero-inflated negative binomial regression model with smoothing. Fish Res 84:210–221. doi: 10.1016/j.fishres.2006.10.019 CrossRefGoogle Scholar
  76. Monod J (1968) Le complexe urophore des poisons teleosteens. Mem Inst Fond Afr Noire 81:1–70Google Scholar
  77. Olson RJ, Galván-Magaña F (2002) Food habits and consumption rates of common dolphinfish (Coryphaena hippurus) in the eastern Pacific Ocean. US Natl Mar Fish Serv Fish Bull 100:279–298Google Scholar
  78. Olson RJ, Duffy LM, Kuhnert PM, Galván-Magaña F, Bocanegra-Castillo N, Alatorre-Ramirez V (2014) Decadal diet shift in yellowfin tuna (Thunnus albacares) suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Mar Ecol Prog Ser 497:157–178. doi: 10.3354/meps10609 CrossRefGoogle Scholar
  79. Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488. doi: 10.1016/S0169-5347(99)01723-1 CrossRefGoogle Scholar
  80. Parin N (1961) The basis for the classification of the flying fishes (family Oxyporhamphidae and Exocoetidae). US Natl Mus NMFS Transl 67:104Google Scholar
  81. Pauly D, Christensen V, Walters C (2000) Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J Mar Sci 57:697–706. doi: 10.1006/jmsc.2000.0726 CrossRefGoogle Scholar
  82. Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, Doukakis P, Fluharty D, Heneman B, Houde ED, Link J, Livingston PA, Mangel M, McAllister MK, Pope J, Sainsbury KJ (2004) Ecosystem-based fishery management. Science 305:346–347. doi: 10.1126/science.1098222 CrossRefGoogle Scholar
  83. Pinnegar JK, Trenkel VM, Tidd AN, Dawson WA, Du Buit MH (2003) Does diet in Celtic Sea fishes reflect prey availability? J Fish Biol 63:197–212. doi: 10.1111/j.1095-8649.2003.00204.x CrossRefGoogle Scholar
  84. Polovina JJ, Woodworth PA (2012) Declines in phytoplankton cell size in the subtropical oceans estimated from satellite remotely-sensed temperature and chlorophyll, 1998–2007. Deep Sea Res Part II 77–80:82–88. doi: 10.1016/j.dsr2.2012.04.006 CrossRefGoogle Scholar
  85. Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geophys Res Lett 35:L03618. doi: 10.1029/2007gl031745 Google Scholar
  86. Polovina J, Dunne J, Woodworth P, Howell E (2011) Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES J Mar Sci 68:986–995. doi: 10.1093/icesjms/fsq198 CrossRefGoogle Scholar
  87. Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46:609–620. doi: 10.2307/1312990 CrossRefGoogle Scholar
  88. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  89. Román-Verdesoto M, Orozco-Zӧller M (2005) Bycatches of sharks in the tuna purse-seine fishery of the eastern Pacific Ocean reported by observers of the Inter-American Tropical Tuna Commission, 1993–2004. Inter Am Trop Tuna Comm Data Rep 11:67Google Scholar
  90. Sánchez-de Ita JA, Quiñónez-Velázquez C, Galván-Magaña F, Bocanegra-Castillo N, Félix-Uraga R (2011) Age and growth of the silky shark Carcharhinus falciformis from the west coast of Baja California Sur, Mexico. J Appl Ichthyol 27:20–24. doi: 10.1111/j.1439-0426.2010.01569.x CrossRefGoogle Scholar
  91. Scharf FS, Juanes F, Sutherland M (1998) Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques. Ecology 79:448–460. doi: 10.1890/0012-9658(1998)079[0448:ierfte];2 CrossRefGoogle Scholar
  92. Scharf FS, Juanes F, Rountree RA (2000) Predator size–prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar Ecol Prog Ser 208:229–248. doi: 10.3354/meps208229 CrossRefGoogle Scholar
  93. Scott MD, Chivers SJ, Olson RJ, Fiedler PC, Holland K (2012) Pelagic predator associations: tuna and dolphins in the eastern tropical Pacific Ocean. Mar Ecol Prog Ser 458:283–302. doi: 10.3354/meps09740 CrossRefGoogle Scholar
  94. Seki MP, Polovina J (2001) Ocean gyre ecosystems. In: Steele JH, Turekian K, Thorpe S (eds) Encyclopedia of Ocean Sciences. Academic Press, London, pp 1959–1965CrossRefGoogle Scholar
  95. Smithson M, Verkuilen J (2006) A better lemon squeezer? Maximum likelihood regression with beta-distributed dependent variables. Psychol Methods 11:54–71. doi: 10.1037/1082-989X.11.1.54 CrossRefGoogle Scholar
  96. Stevens JD, Bonfil R, Dulvy NK, Walker PA (2000) The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J Mar Sci 57:476–494. doi: 10.1006/jmsc.2000.0724 CrossRefGoogle Scholar
  97. Stramma L, Johnson GC, Sprintall J, Mohrholz V (2008) Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–658. doi: 10.1126/science.1153847 CrossRefGoogle Scholar
  98. Stramma L, Schmidtko S, Levin LA, Johnson GC (2010) Ocean oxygen minima expansions and their biological impacts. Deep Sea Res Part I 57:587–595. doi: 10.1016/j.dsr.2010.01.005 CrossRefGoogle Scholar
  99. Stramma L, Prince ED, Schmidtko S, Luo J, Hoolihan JP, Visbeck M, Wallace DWR, Brandt P, Kortzinger A (2012) Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature 2:33–37. doi: 10.1038/nclimate1304 Google Scholar
  100. Therneau T, Atkinson B, Ripley B (2013) rpart: recursive partitioning. R package version 4.1-3.
  101. Thomson DA, Findley LT, Kerstitch AN (1979) Reef fishes of the Sea of Cortez. Wiley, New YorkGoogle Scholar
  102. Walters C, Pauly D, Christensen V (1999) Ecospace: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2:539–554. doi: 10.1007/s100219900101 CrossRefGoogle Scholar
  103. Watson JT, Essington TE, Lennert-Cody CE, Hall MA (2009) Trade-offs in the design of fishery closures: management of silky shark bycatch in the eastern Pacific Ocean tuna fishery. Conserv Biol 23:626–635. doi: 10.1111/j.1523-1739.2008.01121.x CrossRefGoogle Scholar
  104. Wolff CA (1982) A beak key for eight eastern tropical Pacific cephalopods species, with relationship between their beak dimensions and size. US Natl Mar Fish Serv Fish Bull 80:357–370Google Scholar
  105. Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC Press, New YorkGoogle Scholar
  106. Worm B, Myers RA (2003) Meta-analysis of cod-shrimp interactions reveals top-down control in oceanic food webs. Ecology 84:162–173. doi: 10.1890/0012-9658(2003)084[0162:MAOCSI]2.0.CO;2 CrossRefGoogle Scholar
  107. Worm B, Tittensor DP (2011) Range contraction in large pelagic predators. Proc Natl Acad Sci USA 108:11942–11947. doi: 10.1073/pnas.1102353108 CrossRefGoogle Scholar
  108. Young JW, Lansdell MJ, Campbell RA, Cooper SP, Juanes F, Guest MA (2010) Feeding ecology and niche segregation in oceanic top predators off eastern Australia. Mar Biol 157:2347–2368. doi: 10.1007/s00227-010-1500-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Leanne M. Duffy
    • 1
    Email author
  • Robert J. Olson
    • 1
  • Cleridy E. Lennert-Cody
    • 1
  • Felipe Galván-Magaña
    • 2
  • Noemi Bocanegra-Castillo
    • 2
    • 4
  • Petra M. Kuhnert
    • 3
  1. 1.Inter-American Tropical Tuna CommissionLa JollaUSA
  2. 2.Centro Interdisciplinario de Ciencias MarinasInstituto Politécnico NacionalLa PazMéxico
  3. 3.CSIROGlen OsmondAustralia
  4. 4.Centro de Investigaciones Biológicas del Noroeste, S.C.Instituto Politécnico NacionalLa PazMéxico

Personalised recommendations