Skip to main content
Log in

Reproductive success of parasitized males in a marine reef fish

  • Short note
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Parasitism is hypothesized to reduce reproductive success in heavily parasitized males because females may preferentially mate with less parasitized males (parasite-mediated sexual selection) or parasites may compromise male competitiveness. In marine systems, this hypothesis is largely unexplored. This paper provides the first confirmed record of a copepod ectoparasite (Caligus buechlerae Hewitt 1964) on the common triplefin (Forsterygion lapillum) and evaluates the hypothesis that males parasitized with C. buechlerae experience lower reproductive success than unparasitized males (as determined by the presence and area of eggs within male nests). We found that 38 % of males we surveyed were infected with at least one C. buechlerae, with a median of two individuals per infected male. About 32 % of males were defending eggs, with 62.5 % of those males infected with at least one parasite. Males of greater total length (TL) were both more likely to be infected and more likely to be defending eggs. However, when statistically accounting for the effects of TL, parasite infection had no effect on the probability of defending eggs, or the average surface area of eggs when present. Positive covariation in fish length, the presence of eggs and parasite infection observed here potentially suggest that the importance of parasitic infection on reproductive success may depend upon the strength of selection for larger male body size. Our study is one of the few studies to investigate the effects of ectoparasites on reproductive success in reef fish and also provides a quantitative measure of infection for a widespread species within New Zealand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Able D (1996) The contagion indicator hypothesis for parasite-mediated sexual selection. Proc Natl Acad Sci USA 93:2229–2233. doi:10.1073/pnas.93.5.2229

    Article  CAS  Google Scholar 

  • Adlard RD, Lester RJ (1994) Dynamics of the interaction between the parasitic isopod, Anilocra pomacentri, and the coral reef fish, Chromis nitida. Parasitology 109:311–324

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. Autom Control IEEE Trans 19:716–723

    Article  Google Scholar 

  • Barber I (2002) Parasites, male–male competition and female mate choice in the sand goby. J Fish Biol 61:185–198. doi:10.1006/jfbi.2002.2031

    Google Scholar 

  • Barber I (2013) Sticklebacks as model hosts in ecological and evolutionary parasitology. Trends Parasitol 29:556–566. doi:10.1016/j.pt.2013.09.004

    Article  Google Scholar 

  • Barber I, Hoare D, Krause J (2000) Effects of parasites on fish behaviour: a review and evolutionary perspective. Rev Fish Biol Fish 131–165

  • Barber I, Arnott SA, Braithwaite VA et al (2001) Indirect fitness consequences of mate choice in sticklebacks: offspring of brighter males grow slowly but resist parasitic infections. Proc Biol Sci 268:71–76. doi:10.1098/rspb.2000.1331

    Article  CAS  Google Scholar 

  • Barton L (2013) MuMIn: multi-model inference. R package version 1.9.5. http://CRAN.R-project.org/package=MuMIn

  • Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4. R package version 1.0-4. http://CRAN.R-project.org/package=lme4

  • Beckers OM, Wagner WE (2013) Parasitoid infestation changes female mating preferences. Anim Behav 85:791–796. doi:10.1016/j.anbehav.2013.01.025

    Article  Google Scholar 

  • Binning SA, Roche DG, Layton C (2013) Ectoparasites increase swimming costs in a coral reef fish. Biol Lett 9:20120927. doi:10.1098/rsbl.2012.0927

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  Google Scholar 

  • Borg ÅA, Forsgren E, Amundsen T (2006) Seasonal change in female choice for male size in the two-spotted goby. Anim Behav 72:763–771. doi:10.1016/j.anbehav.2005.11.025

    Article  Google Scholar 

  • Borgia G (1986) Satin bowerbird parasites: a test of the bright male hypothesis. Behav Ecol Sociobiol 19:355–358

    Article  Google Scholar 

  • Boxshall GA (1974) Infections with parasitic copepods in North Sea marine fishes. J Mar Biol Assoc United Kingdom 54:355–372. doi:10.1017/S0025315400058598

    Article  Google Scholar 

  • Bravo S (2010) The reproductive output of sea lice Caligus rogercresseyi under controlled conditions. Exp Parasitol 125:51–54. doi:10.1016/j.exppara.2009.12.001

    Article  Google Scholar 

  • Canty A, Ripley B (2013) Boot: bootstrap R (S-Plus) functions. R package version 1.3-9

  • Cheney KL, Côté IM (2003) The ultimate effect of being cleaned: does ectoparasite removal have reproductive consequences for damselfish clients? Behav Ecol 14:892–896. doi:10.1093/beheco/arg079

    Article  Google Scholar 

  • Clayton D (1991) The influence of parasites on host sexual selection. Parasitol Today 7:329–334. doi:10.1016/0169-4758(91)90211-6

    Article  CAS  Google Scholar 

  • Clayton DH, Pruett-Jones SG, Lande R (1992) Reappraisal of the interspecific prediction of parasite-mediated sexual selection: opportunity knocks. J Theor Biol 157:95–108. doi:10.1016/S0022-5193(05)80759-3

    Article  Google Scholar 

  • Clements KD (2003) Triplefins. The ecology of New Zealand’s rocky reefs. Craig Potton Publishing, Nelson, pp 160–167

    Google Scholar 

  • Costello MJ (2006) Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol 22:475–483. doi:10.1016/j.pt.2006.08.006

    Article  Google Scholar 

  • Costello MJ (2009) How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proc Biol Sci 276:3385–3394. doi:10.1098/rspb.2009.0771

    Article  Google Scholar 

  • Côté I, Hunte W (1989) Male and female mate choice in the redlip blenny: why bigger is better. Anim Behav 38:78–88. doi:10.1016/S0003-3472(89)80067-3

    Article  Google Scholar 

  • Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82:171–185

    Article  Google Scholar 

  • Ehman KD, Scott ME (2002) Female mice mate preferentially with non-parasitized males. Parasitology 125:461–466. doi:10.1017/S003118200200224X

    Article  CAS  Google Scholar 

  • Endler J, Lyles A (1989) Bright ideas about parasites. Trends Ecol Evol 4:246–248

    Article  CAS  Google Scholar 

  • Feary DA, Clements KD (2006) Habitat use by triplefin species (Tripterygiidae) on rocky reefs in New Zealand. J Fish Biol 69:1031–1046. doi:10.1111/j.1095-8649.2006.01178.x

    Article  Google Scholar 

  • Feary DA, Wellenreuther M, Clements KD (2009) Trophic ecology of New Zealand triplefin fishes (Family Tripterygiidae). Mar Biol 156:1703–1714. doi:10.1007/s00227-009-1205-2

    Article  Google Scholar 

  • Finley R, Forrester G (2003) Impact of ectoparasites on the demography of a small reef fish. Mar Ecol Prog Ser 248:305–309. doi:10.3354/meps248305

    Article  Google Scholar 

  • Forbes M (1991) Ectoparasites and mating success of male Enallagma ebrium damselflies (Odonata: Coenagrionidae). Oikos 60:336–342

    Article  Google Scholar 

  • Francis M (2012) Coastal fishes of New Zealand. Craig Potton Publishing, Nelson

    Google Scholar 

  • González L, Carvajal J (2003) Life cycle of Caligus rogercresseyi, (Copepoda: Caligidae) parasite of Chilean reared salmonids. Aquaculture 220:101–117. doi:10.1016/S0044-8486(02)00512-4

    Article  Google Scholar 

  • Grutter A (1994) Spatial and temporal variations of the ectoparasites of seven reef fish species from Lizard Island and Heron Island, Australia. Mar Ecol Prog Ser 115:21–30. doi:10.3354/meps115021

    Article  Google Scholar 

  • Hakkarainen H, Ilmonen P, Koivunen V, Korpimäki E (1998) Blood parasites and nest defense behaviour of Tengmalm’s owls. Oecologia 574–577. doi: 10.1007/s004420050482

  • Hamilton WD (1982) Pathogens as causes of genetic diversity in their host populations. In: Anderson RM, May RM (eds) Population biology of infectious diseases. Springer, Berlin, pp 269–296

    Chapter  Google Scholar 

  • Hamilton W, Poulin R (1997) The Hamilton and Zuk hypothesis revisited: a meta-analytical approach. Behaviour 134:299–320

    Article  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387. doi:10.1126/science.7123238

    Article  CAS  Google Scholar 

  • Handford C (1979) The habitat, population dynamics and social organisation of two tripterygiid fishes. MSc thesis. University of Auckland

  • Hastings PA (1992) Nest-site size as a short-term constraint on the reproductive success of paternal fishes. Environ Biol Fishes 34:213–218. doi:10.1007/BF00002397

    Article  Google Scholar 

  • Heuschele J, Candolin U (2010) Reversed parasite-mediated selection in sticklebacks from eutrophied habitats. Behav Ecol Sociobiol 64:1229–1237. doi:10.1007/s00265-010-0937-9

    Article  Google Scholar 

  • Heuschele J, Mannerla M, Gienapp P, Candolin U (2009) Environment-dependent use of mate choice cues in sticklebacks. Behav Ecol 20:1223–1227. doi:10.1093/beheco/arp123

    Article  Google Scholar 

  • Hewitt G (1964) Some Copepoda Parasitic on fishes of the New Zealand region. PhD thesis. Victoria University of Wellington

  • Hillgarth N (1996) Ectoparasite transfer during mating in ring-necked pheasants Phasianus colchicus. J Avian Biol 27:260–262. doi:10.2307/3677232

    Article  Google Scholar 

  • Hine PM, Jones JB, Diggles BK (2000) A checklist of the parasites of New Zealand fishes, including previously unpublished records. NIWA Tech Rep 75:1–94

    Google Scholar 

  • Houde AE, Torio AJ (1992) Effect of parasitic infection on male color pattern and female choice in guppies. Behav Ecol 3:346–351. doi:10.1093/beheco/3.4.346

    Article  Google Scholar 

  • Howard RD, Micheulla DJ (1990) Parasitism and mate competition. Oikos 58:120–122

    Article  Google Scholar 

  • Johnson SC, Treasurer JW, Bravo S, Nagasawa K (2004) A review of the impact of parasitic copepods on marine aquaculture. Zool Stud 43:229–243

    Google Scholar 

  • Jones JB (1988) New Zealand parasitic Copepoda; genus Caligus Müller, 1785 (Siphonostomatoida: Caligidae). NZ J Zool 15:397–413. doi:10.1080/03014223.1988.10422966

    Article  Google Scholar 

  • López S (1999) Parasitized female guppies do not prefer showy males. Anim Behav 57:1129–1134. doi:10.1006/anbe.1998.1064

    Article  Google Scholar 

  • Magnhagen C, Kvarnemo L (1989) Big is better: the importance of size for reproductive success in male Pomatoschistus minutus (Pallas) (Pisces, Gobiidae). J Fish Biol 35:755–763. doi:10.1111/j.1095-8649.1989.tb03027.x

    Article  Google Scholar 

  • McCallum HI, Kuris A, Harvell CD et al (2004) Does terrestrial epidemiology apply to marine systems? Trends Ecol Evol 19:585–591. doi:10.1016/j.tree.2004.08.009

    Article  Google Scholar 

  • Milinski M, Bakker T (1990) Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature. doi:10.1038/344330a0

    Google Scholar 

  • Møller A, Christe P, Lux E (1999) Parasitism, host immune function, and sexual selection. Q Rev Biol 74:3–20. doi:10.1086/392949

    Article  Google Scholar 

  • Mustafa A, Conboy G, Burka J (2000a) Lifespan and reproductive capacity of sea lice, Lepeophtheirus salmonis, under laboratory conditions. Aquac Assoc Can Spec Publ 4:113–114

    Google Scholar 

  • Mustafa A, Speare D, Daley J et al (2000b) Enhanced susceptibility of seawater cultured rainbow trout, Oncorhynchus mykiss (Walbaum), to the microsporidian Loma salmonae during a primary infection with the sea louse, Lepeophtheirus salmonis. J Fish Biol 23:337–341

    Google Scholar 

  • Oliveira RF, Almada VC, Forsgren E, Goncalves EJ (1999) Temporal variation in male traits, nesting aggregations and mating success in the peacock blenny. J Fish Biol 54:499–512. doi:10.1111/j.1095-8649.1999.tb00631.x

    Article  Google Scholar 

  • Oliveira RF, Miranda JA, Carvalho N et al (2000) Male mating success in the Azorean rock-pool blenny: the effects of body size, male behaviour and nest characteristics. J Fish Biol 57:1416–1428

    Article  Google Scholar 

  • Pélabon C, Borg ÅA, Bjelvenmark J et al (2005) Do microsporidian parasites affect courtship in two-spotted gobies? Mar Biol 148:189–196. doi:10.1007/s00227-005-0056-8

    Article  Google Scholar 

  • Poulin R (1994) Mate choice decisions by parasitized female upland bullies, Gobiomorphus breviceps. Proc R Soc B Biol Sci 256:183–187. doi:10.1098/rspb.1994.0068

    Article  Google Scholar 

  • Poulin R, Vickery W (1993) Parasite distribution and virulence: implications for parasite-mediated sexual selection. Behav Ecol Sociobiol. doi:10.1007/BF00170258

    Google Scholar 

  • Poulin R, Vickery W (1996) Parasite-mediated sexual selection: just how choosy are parasitized females? Behav Ecol Sociobiol 38:43–49. doi:10.1007/s002650050215

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rohde K, Hayward C, Heap M (1995) Aspects of the ecology of metazoan ectoparasites of marine fishes. Int J Parasitol. doi:10.1016/0020-7519(95)00015-T

    Google Scholar 

  • Rosenqvist G, Johansson K (1995) Male avoidance of parasitized females explained by direct benefits in a pipefish. Anim Behav 49:1039–1045. doi:10.1006/anbe.1995.0133

    Article  Google Scholar 

  • Sparkes TC, Rush V, Kopp DA, Foster SA (2013) Reproductive success in a natural population of male three-spined stickleback Gasterosteus aculeatus: effects of nuptial colour, parasites and body size. J Fish Biol 82:1720–1727. doi:10.1111/jfb.12083

    Article  CAS  Google Scholar 

  • Thompson S (1986) Male spawning success and female choice in the mottled triplefin, Forsterygion varium (Pisces: Tripterygiidae). Anim Behav 34:580–589. doi:10.1016/S0003-3472(86)80127-0

    Article  Google Scholar 

  • Tobler M, Plath M, Burmeister H, Schlupp I (2006) Black spots and female association preferences in a sexual/asexual mating complex (Poecilia, Poeciliidae, Teleostei). Behav Ecol Sociobiol 60:159–165. doi:10.1007/s00265-005-0152-2

    Article  Google Scholar 

  • Warren EJ (1990) Spawning patterns within the breeding seasons of Favonigobius lateralis (Family: Gobiidae) and Forsterygion lapillum (Family: Tripterygiidae). MSc thesis. University of Auckland

  • Webster JP, Hoffman JI, Berdoy M (2003) Parasite infection, host resistance and mate choice: battle of the genders in a simultaneous hermaphrodite. Proc Biol Sci 270:1481–1485. doi:10.1098/rspb.2003.2354

    Article  Google Scholar 

  • Wellenreuther M, Clements K (2007) Reproductive isolation in temperate reef fishes. Mar Biol. doi:10.1007/s00227-007-0713-1

    Google Scholar 

  • Wellenreuther M, Barrett PT, Clements KD (2007a) Ecological diversification in habitat use by subtidal triplefin fishes (Tripterygiidae). Mar Ecol Ser 330:235–246

    Article  Google Scholar 

  • Wellenreuther M, Syms C, Clements KD (2007b) Body size and ecological diversification in a sister species pair of triplefin fishes. Evol Ecol 22:575–592. doi:10.1007/s10682-007-9183-7

    Article  Google Scholar 

  • Wellenreuther M, Syms C, Clements KD (2008) Consistent spatial patterns across biogeographic gradients in temperate reef fishes. Ecography (Cop) 31:84–94

    Article  Google Scholar 

  • Willis T (2001) Visual census methods underestimate density and diversity of cryptic reef fishes. J Fish Biol 59:1408–1411. doi:10.1006/jfbi.2001.1721

    Article  Google Scholar 

  • Zuk M, Thornhill R, Ligon J, Johnson K (1990) Parasites and mate choice in red jungle fowl. Am Zool 30:235–244

    Google Scholar 

Download references

Acknowledgments

This research was funded by an “OBI Coasts and Oceans” grant from the New Zealand Foundation for Research, Science and Technology that was awarded to the National Institute of Water and Atmospheric science (NIWA) with a subcontract to JS, and a Marsden grant awarded to JS. Logistic support was provided by the Victoria University Coastal Ecology Lab (VUCEL), of which this paper is a contribution. We gratefully acknowledge the research and technical assistance from the following people: C. Guinut, A. LaFerriere and D. Garrett. In addition, four anonymous reviewers made helpful contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Mensink.

Additional information

Communicated by K. D. Clements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mensink, P.J., Geange, S.W. & Shima, J.S. Reproductive success of parasitized males in a marine reef fish. Mar Biol 161, 2689–2696 (2014). https://doi.org/10.1007/s00227-014-2533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2533-4

Keywords

Navigation