Skip to main content

Advertisement

Log in

Temporal shifts in the fatty acid profiles of rocky intertidal invertebrates

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Fatty acid profiles were determined in rocky intertidal suspension-feeders (mussels and polychaetes) and grazers (limpets and sea urchins) on a monthly basis over 1 year to assess potential dietary overlap between consumers occupying the same trophic guild, and any temporal shifts in diets. Both reproductive and non-reproductive tissues were assessed in an attempt to separate influences of food quality with those of life cycle. Relative variability in fatty acids over time could not be predicted from the feeding guild occupied by a consumer, and influential factors of the temporal shifts included both dietary and reproductive dynamics (even in muscle tissues). Species in the same trophic guild occupied separate trophic niches throughout the year, hence minimising competitive interactions regarding food acquisition. Based on overall variation in fatty acid profiles of muscle tissues, the suspension-feeders Perna perna and Gunnarea gaimardi and the grazing limpet Cymbula oculus occupied narrower feeding niches relative to the grazing sea urchin Parechinus angulosus. Our results provide compelling evidence for potentially large changes in the lipid composition of intertidal invertebrate populations over relatively small temporal scales (i.e. month to month), and these have important implications for short-term field collections intended for assessing invertebrate diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arafa S, Chouaibi M, Sadok S, El Abed A (2012) The influence of season on the gonad index and biochemical composition of the sea urchin Paracentrotus lividus from the Golf of Tunis. Sci World J 2012:1–8

    Article  Google Scholar 

  • Bachok Z, Meziane T, Mfilinge PL, Tsuchiya M (2009) Fatty acid markers as an indicator for temporal changes in food sources of the bivalve Quidnipagus palatum. Aquat Ecosyst Health Manage 12:390–400

    Article  CAS  Google Scholar 

  • Benedetti-Cecchi L, Bulleri F, Cinelli F (2000) The interplay of physical and biological factors in maintaining mid-shore and low-shore assemblages on rocky coasts in the north-west Mediterranean. Oecologia 123:406–417

    Article  Google Scholar 

  • Beninger PG, Pennec GL, Pennec ML (2003) Demonstration of nutrient pathway from the digestive system to oocytes in the gonad intestinal loop of the scallop Pecten maximus L. Biol Bull 205:83–92

    Article  Google Scholar 

  • Blackmore DT (1969) Studies of Patella vulgata L. II. Seasonal variation in biochemical composition. J Exp Mar Biol Ecol 3:231–245

    Article  CAS  Google Scholar 

  • Bode A, Alvarez-Ossorio MT, Varela M (2006) Phytoplankton and macrophyte contributions to littoral food webs in the galician upwelling estimated from stable isotopes. Mar Ecol Prog Ser 318:89–102

    Article  CAS  Google Scholar 

  • Bracken MES, Menge BA, Foley MM, Sorte CJB, Lubchenco J, Schiel DR (2012) Mussel selectivity for high-quality food drives carbon inputs into open-coast intertidal ecosystems. Mar Ecol Prog Ser 459:53–62

    Article  CAS  Google Scholar 

  • Braeckman U, Provoost P, Sabbe K, Soetaert K, Middelburg JJ, Vincx M, Vanaverbeke J (2012) Temporal dynamics in the diet of two marine polychaetes as inferred from fatty acid biomarkers. J Sea Res 68:6–19

    Article  CAS  Google Scholar 

  • Branch GM (1981) The biology of limpets: physical factors, energy flow and ecological interactions. Oceanogr Mar Biol Ann Rev 19:235–380

    Google Scholar 

  • Brazão S, Morais S, Boaventura D, Ré P, Narciso L, Hawkins SJ (2003) Spatial and temporal variation of the fatty acid composition of Patella spp. (Gastropoda: Prosobranchia) soft bodies and gonads. Comp Biochem Physiol 136B:425–441

    Article  Google Scholar 

  • Budge SM, Parrish CC (1999) Lipid class and fatty acid composition of Pseudo-nitzschia multiseries and Pseudo-nitzschia pungens and effects of lipolytic enzyme deactivation. Phytochemistry 52:561–566

    Article  CAS  Google Scholar 

  • Bulleri F, Russell BD, Connell SD (2012) Context-dependency in the effects of nutrient loading and consumers on the availability of space in marine rocky environments. PLoS ONE 7:e33825

    Article  CAS  Google Scholar 

  • Camus PA, Daroch K, Opazo LF (2008) Potential for omnivory and apparent intraguild predation in rocky intertidal herbivore assemblages from northern Chile. Mar Ecol Prog Ser 361:35–45

    Article  Google Scholar 

  • Day E, Branch GM (2002) Effects of sea urchins (Parechinus angulosus) on recruits and juveniles of abalone (Haliotis midae). Ecol Monogr 72:133–149

    Article  Google Scholar 

  • De Moreno JEA, Pollero RJ, Moreno VJ, Brenner RR (1980) Lipids and fatty acids of the mussel (Mytilus platensis d’Orbigny) from South Atlantic waters. J Exp Mar Biol Ecol 48:263–276

    Article  Google Scholar 

  • Dethier MN, Sosik E, Galloway AWE, Duggins DO, Simenstad CA (2013) Addressing assumptions: variation in stable isotopes and fatty acids of marine macrophytes can confound conclusions of food web studies. Mar Ecol Prog Ser 478:1–14

    Article  CAS  Google Scholar 

  • Ezgeta-Balić D, Najdek M, Peharda M, Blažina M (2012) Seasonal fatty acid profile analysis to trace origin of food sources of four commercially important bivalves. Aquaculture 334–337:89–100

    Article  Google Scholar 

  • Fahl K, Kattner G (1993) Lipid content and fatty acid composition of algal communities in sea-ice and water from the Weddell Sea (Antarctica). Polar Biol 13:405–409

    Article  Google Scholar 

  • Falk-Petersen S, Dahl TM, Scott CL, Sargent JR, Gulliksen B, Kwasniewski S, Hop H, Millar R-M (2002) Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Mar Ecol Prog Ser 227:187–194

    Article  CAS  Google Scholar 

  • Fernández-Reiriz MJ, Perez-Camacho A, Ferreiro MJ, Blanco J, Planas M, Campos MJ, Labarta U (1989) Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture 83:17–37

    Article  Google Scholar 

  • Fréchette M, Bourget E (1985) Energy flow between the pelagic and benthic zones: factors controlling particulate organic matter available to an intertidal mussel bed. Can J Fish Aquat Sci 42:1158–1165

    Article  Google Scholar 

  • Freites L, Fernández-Reiriz MJ, Labarta U (2002) Fatty acid profiles of Mytilus galloprovincialis (Lmk) mussel of subtidal and rocky shore origin. Comp Biochem Physiol 132B:453–461

    Article  CAS  Google Scholar 

  • Freites L, García N, Troccoli L, Maeda-Martínez AN, Fernández-Reiriz MJ (2010) Influence of environmental variables and reproduction on the gonadal fatty acid profile of tropical scallop Nodipecten nodosus. Comp Biochem Physiol 157B:408–414

    Article  CAS  Google Scholar 

  • Galap C, Netchitaı̈lo P, Leboulenger F, Grillot JP (1999) Variations of fatty acid contents in selected tissues of the female dog cockle (Glycymeris glycymeris L., Mollusca, Bivalvia) during the annual cycle. Comp Biochem Physiol 122A:241–254

    Article  CAS  Google Scholar 

  • Galloway AWE, Britton-Simmons KH, Duggins DO, Gabrielson PW, Brett MT (2012) Fatty acid signatures differentiate marine macrophytes at ordinal and family ranks. J Phycol 48:956–965

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9

    Google Scholar 

  • Hill JM, McQuaid CD (2008) δ13C and δ15N biogeographic trends in rocky intertidal communities along the coast of South Africa: evidence of strong environmental signatures. Est Coast Shelf Sci 80:261–268

    Article  Google Scholar 

  • Hodgson AN (2010) Reproductive seasonality of Southern African inshore and estuarine invertebrates—a biogeographic review. Afr Zool 45:1–17

    Article  Google Scholar 

  • Hughes AD, Kelly MS, Barnes DK, Catarino AI, Black KD (2006) The dual functions of sea urchin gonads are reflected in the temporal variations of their biochemistry. Mar Biol 148:789–798

    Article  Google Scholar 

  • Hurtado MA, Racotta IS, Arcos F, Morales-Bojórquez E, Moal J, Soudant P, Palacios E (2012) Seasonal variations of biochemical, pigment, fatty acid, and sterol compositions in female Crassostrea corteziensis oysters in relation to the reproductive cycle. Comp Biochem Physiol 163B:172–183

    Article  Google Scholar 

  • Indarti E, Majid MIA, Hashim R, Chong A (2005) Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. J Food Comp Anal 18:161–170

    Article  CAS  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602

    Article  Google Scholar 

  • Kelly JR, Scheibling RE, Iverson SJ, Gagnon P (2008) Fatty acid profiles in the gonads of the sea urchin Strongylocentrotus droebachiensis on natural algal diets. Mar Ecol Prog Ser 373:1–9

    Article  CAS  Google Scholar 

  • Kelly JR, Scheibling RE, Iverson SJ (2009) Fatty acids tracers for native and invasive macroalgae in an experimental food web. Mar Ecol Prog Ser 391:53–63

    Article  CAS  Google Scholar 

  • Kharlamenko VI, Zhukova NV, Khotimchenko SV, Svetachev VI, Kamenev GM (1995) Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Mar Ecol Prog Ser 120:231–241

    Article  CAS  Google Scholar 

  • Labarta U, Fernández-Reiriz MJ, Babarro JMF (1997) Differences in physiological energetics between intertidal and raft cultivated mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 152:167–173

    Article  Google Scholar 

  • Langdon CJ, Waldock MJ (1981) The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J Mar Biol Ass UK 61:431–448

    Article  CAS  Google Scholar 

  • Layman CA, Araújo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–562

    Article  Google Scholar 

  • Lutjeharms JRE (2005) The coastal oceans of south-eastern Africa. In: Robinson AR, Brink K (eds) The sea. Chicago University Press, Chicago, pp 781–832

    Google Scholar 

  • Menge BA, Daley BA, Wheeler PA, Dahlhoff E, Sanford E, Strub PT (1997) Benthic-pelagic links and rocky intertidal communities: bottom-up effects on top-down control? Proc Nat Acad Sci USA 94:14530–14535

    Article  CAS  Google Scholar 

  • Morais S, Boaventura D, Narciso L, Ré P, Hawkins SJ (2003) Gonad development and fatty acid composition of Patella depressa Pennant (Gastropoda: Prosobranchia) populations with different patterns of spatial distribution, in exposed and sheltered sites. J Exp Mar Biol Ecol 294:61–80

    Article  CAS  Google Scholar 

  • Mourente G, Vázquez R (1996) Changes in the content of total lipid, lipid classes and their fatty acids of developing eggs and unfed larvae of the Senegal sole, Solea senegalensis Kaup. Fish Physiol Biochem 15:221–235

    Article  CAS  Google Scholar 

  • Napolitano GE, Ackman RG (1992) Anatomical distributions and temporal variations of lipid classes in sea scallops Placopecten magellanicus (Gmelin) from Georges Bank (Nova Scotia). Comp Biochem Physiol 103B:645–650

    CAS  Google Scholar 

  • Narváez M, Freites L, Guevara M, Mendoza J, Guderley H, Lodeiros CJ, Salazar G (2008) Food availability and reproduction affects lipid and fatty acid composition of the brown mussel, Perna perna, raised in suspension culture. Comp Biochem Physiol 149B:293–302

    Article  Google Scholar 

  • Ndlovu RT (2013) Temporal variability in the fatty acid composition of suspension-feeders and grazers on a South African rocky shore. MSc thesis, Rhodes University, Grahamstown, 163 pp

  • Parrish CC, Abrajano TA, Budge SM, Helleur RJ, Hudson ED, Pulchan K, Ramos C (2000) Lipid and phenolic biomarkers in marine ecosystems: analysis and applications. In: Wangersky P (ed) Marine chemistry. The handbook of environmental chemistry Vol 5D. Springer, Berlin, pp 193–223

  • Perry GJ, Volkman JK, Johns RB, Bavor HJ Jr (1979) Fatty acids of bacterial origin in contemporary marine sediments. Geochim Cosmochim Acta 43:1715–1725

    Article  CAS  Google Scholar 

  • Pirini M, Manuzzi MP, Pagliarani A, Trombetti F, Borgatti AR, Ventrella V (2007) Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comp Biochem Physiol 147B:616–626

    Article  CAS  Google Scholar 

  • Prins TC, Smaal AC, Pouwer AJ, Dankers N (1996) Filtration and resuspension of particulate matter and phytoplankton on an intertidal mussel bed in the Oosterschelde estuary (SW Netherlands). Mar Ecol Prog Ser 142:121–134

    Article  Google Scholar 

  • Richoux NB, Ndhlovu RT (2014) Temporal variability in the isotopic niches of rocky shore grazers and suspension-feeders. Marine Ecology (in press)

  • Richoux NB, Deibel D, Thompson RJ, Parrish CC (2005) Seasonal and developmental variation in the fatty acid composition of Mysis mixta (Mysidacea) and Acanthostepheia malmgreni (Amphipoda) from the hyperbenthos of a cold-ocean environment (Conception Bay, Newfoundland). J Plankt Res 8:719–733

    Article  Google Scholar 

  • Richoux NB, Vermeulen I, Froneman PW (2014a) Fatty acid profiles reveal temporal and spatial differentiation in diets within and among syntopic rocky shore suspension-feeders. Mar Ecol Prog Ser 495:143–160

    Article  CAS  Google Scholar 

  • Richoux NB, Vermeulen I, Froneman PW (2014b) Stable isotope ratios indicate differential omnivory among syntopic rocky shore suspension-feeders. Mar Biol 161:971–984

    Article  CAS  Google Scholar 

  • Riisgård HU, Larsen PS (2010) Particle capture mechanisms in suspension-feeding invertebrates. Mar Ecol Prog Ser 418:255–293

    Article  Google Scholar 

  • Riley GA (1963) Organic aggregates in sea water and the dynamics of their formation and ulitization. Limnol Oceanogr 8:372–378

    Article  CAS  Google Scholar 

  • Schultz DM, Quinn JG (1973) Fatty acid composition of organic detritus from Spartina alterniflora. Est Coast Mar Sci 1:177–190

    Article  Google Scholar 

  • Shin PKS, Yip KM, Xu WZ, Wong WH, Cheung SG (2008) Fatty acids as markers to demonstrating trophic relationships among diatoms, rotifers and green-lipped mussels. J Exp Mar Biol Ecol 357:75–84

    Article  CAS  Google Scholar 

  • Soudant P, Van Ryckeghem K, Marty Y, Moal J, Samain JF, Sorgeloos P (1999) Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific Oyster Crassostrea gigas. Comp Biochem Physiol 123B:209–222

    Article  CAS  Google Scholar 

  • Stead RA, Richoux NB, Pereda SV, Thompson RJ (2013) Influence of an intermittent food supply on energy storage by the subpolar deposit feeder Yoldia hyperborea (Bivalvia: Nuculanidae). Polar Biol 36:1333–1345

    Article  Google Scholar 

  • Thompson RC, Crowe TP, Hawkins SJ (2002) Rocky intertidal communities: past environmental changes, present status and predictions for the next 25 years. Environ Conserv 29:168–191

    Article  Google Scholar 

  • Thompson RC, Norton TA, Hawkins SJ (2004) Physical stress and biological control regulate the producer-consumer balance in intertidal biofilms. Ecology 85:1372–1382

    Article  Google Scholar 

  • Ventrella V, Pirini M, Pagliarani A, Trombetti F, Manuzzi MP, Borgatti AR (2008) Effect of temporal and geographical factors on fatty acid composition of M. galloprovincialis from the Adriatic Sea. Comp Biochem Physiol 149B:241–250

    Article  CAS  Google Scholar 

  • Virtue P, Nicol S, Nichols PD (1993) Changes in the digestive gland of Euphausia superba during short-term starvation: lipid class, fatty acid and sterol content and composition. Mar Biol 117:441–448

    CAS  Google Scholar 

  • Ward JE, Shumway SE (2004) Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. J Exp Mar Biol Ecol 300:83–130

    Article  Google Scholar 

  • Wong WH, Levinton JS (2006) The trophic linkage between zooplankton and benthic suspension feeders: direct evidence from analyses of bivalve faecal pellets. Mar Biol 148:799–805

    Article  Google Scholar 

Download references

Acknowledgments

We thank J.A. Iitembu and E.S. Antonio for field assistance, and M.H. Villet for statistical advice. The research was funded by the National Research Foundation of South Africa (NRF) and Rhodes University (RU), and bursary funding of R.T.N. was provided by the NRF. Fatty acid analyses were performed in the Richoux Research Laboratory, funded by the NRF and RU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole B. Richoux.

Additional information

Communicated by G. Chapman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richoux, N.B., Ndhlovu, R.T. Temporal shifts in the fatty acid profiles of rocky intertidal invertebrates. Mar Biol 161, 2199–2211 (2014). https://doi.org/10.1007/s00227-014-2481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2481-z

Keywords

Navigation