Skip to main content

Advertisement

Log in

Molecular evidence reveals the distinctiveness of Indo-Pacific finless porpoises (Neophocaena phocaenoides) in the Pearl River Estuary and insights into genus Neophocaena’s origin

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Much of the knowledge about the wide-ranging finless porpoise species (Neophocaena phocaenoides) remains limited, as well as its phylogenetic relationship with another taxa (N. asiaeorientalis) in genus Neophocaena. Using 11 microsatellite loci, we first investigated population differentiation of N. phocaenoides within the Pearl River Estuary (PRE). We then used mtDNA control region (CR) and cytochrome b (cyt b) sequences from the PRE population (75) as well as those from other geographic populations to reveal the divergence level and phylogeny of the PRE N. phocaenoides. Pairwise F ST analysis with mtDNA CR sequences determined that the PRE population was highly differentiated from other putative populations (with the closest population 400-km away in the Taiwan Strait) (F ST = 0.388–0.764, p < 0.01). The level of genetic divergence between the PRE and its conspecific population was as high as comparisons between the two subspecies under N. asiaeorientalis (F ST = 0.361, p < 0.01). Our results also revealed contrasting demographic histories between the PRE and the other geographic finless porpoise populations (the Taiwan Strait population, the southern and northern Yellow Sea population and the middle Yangtze River population), which suggested stability in the warmer waters of the Indo-Pacific and expansions in the colder waters of the North Pacific. Phylogenetic trees created using cyt b data indicated that some haplotypes exclusive to the PRE population were basal to the rest of the genus. Based on these results, we argue that the genus Neophocaena originated in tropical waters (because the PRE is the most southern location sampled, i.e., the closest location to tropical waters).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Evol Syst 18:489–522. doi:10.1146/annurev.es.18.110187.002421

    Google Scholar 

  • Barros N, Jefferson TA, Parsons E (2002) Food habits of finless porpoises (Neophocaena phocaenoides) in Hong Kong waters. Raffles Bull Zool 50:115–124

    Google Scholar 

  • Barros NB, Jefferson TA, Parsons E (2004) Feeding habits of Indo-Pacific humpback dolphins (Sousa chinensis) stranded in Hong Kong. Aquat Mamm 30:179–188

    Article  Google Scholar 

  • Chen L, Yang G (2008) Development of tetranucleotide microsatellite loci for the finless porpoise (Neophocaena phocaenoides). Conserv Genet 9:1033–1035. doi:10.1007/s10592-007-9443-7

    Article  CAS  Google Scholar 

  • Chen CTA, Wang SL, Wang BJ, Pai SC (2001) Nutrient budgets for the South China Sea basin. Mar Chem 75:281–300. doi:10.1016/S0304-4203(01)00041-X

    Article  CAS  Google Scholar 

  • Chen L, Bruford M, Yang G (2007) Isolation and characterization of microsatellite loci in the finless porpoise (Neophocaena phocaenoides). Mol Ecol Notes 7:1129–1131. doi:10.1111/j.1471-8286.2007.01803.x

    Article  CAS  Google Scholar 

  • Chen L, Bruford MW, Xu SX, Zhou KY, Yang G (2010) Microsatellite variation and significant population genetic structure of endangered finless porpoises (Neophocaena phocaenoides) in Chinese coastal waters and the Yangtze River. Mar Biol 157:1453–1462. doi:10.1007/s00227-010-1420-x

    Article  Google Scholar 

  • Culik B (2010) Odontocetes. The toothed whales: “Neophocaena phocaenoides”. UNEP/CMS Secretariat, Bonn, Germany. http://www.cms.int/reports/small_cetaceans/index.htm

  • Davies J (1963) The antitropical factor in cetacean speciation. Evolution 17:107–116

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi:10.1186/1471-2148-7-214

    Article  Google Scholar 

  • Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192. doi:10.1093/molbev/msi103

    Article  CAS  Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Engels WR (2009) Exact tests for Hardy–Weinberg proportions. Genetics 183:1431–1441. doi:10.1534/genetics.109.108977

    Article  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  • Fajardo-Mellor L, Berta A, Brownell RL, Boy CC, Goodall NP (2006) The phylogenetic relationships and biogeography of true porpoises (Mammalia: Phocoenidae) based on morphological data. Mar Mamm Sci 22:910–932

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  Google Scholar 

  • Hamilton H, Caballero S, Collins AG, Brownell RL Jr (2001) Evolution of river dolphins. Proc Biol Sci 268:549–556. doi:10.1098/rspb.2000.1385

    Article  CAS  Google Scholar 

  • Hoelzel AR, Hancock JM, Dover GA (1991) Evolution of the cetacean mitochondrial D-loop region. Mol Biol Evol 8:475–493

    CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70. doi:10.2307/4615733

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  Google Scholar 

  • Jacobs DK, Haney TA, Louie KD (2004) Genes, diversity, and geologic process on the Pacific coast. Annu Rev Earth Planet Sci 32:601–652. doi:10.1146/annurev.earth.32.092203.122436

    Article  CAS  Google Scholar 

  • Jefferson TA, Hung SK (2007) An updated, annotated checklist of the marine mammals of Hong Kong. Mammalia 71(3):105–114. doi:10.1515/Mamm.2007.021

    Article  Google Scholar 

  • Jefferson TA, Hung SK, Law L, Torey M, Tregenza N (2002) Distribution and abundance of finless porpoises in Hong Kong and adjacent waters of China. Raffles Bull Zool 50:43–55

    Google Scholar 

  • Jefferson TA, Hung SK, Wursig B (2009) Protecting small cetaceans from coastal development: impact assessment and mitigation experience in Hong Kong. Mar Policy 33(2):305–311. doi:10.1016/j.marpol.2008.07.011

    Article  Google Scholar 

  • Li X, Liu YY, Tzika AC, Zhu Q, Van Doninck K, Milinkovitch MC (2011) Analysis of global and local population stratification of finless porpoises Neophocaena phocaenoides in Chinese waters. Mar Biol 158:1791–1804. doi:10.1007/s00227-011-1692-9

    Article  Google Scholar 

  • Mann J (2000) Cetacean societies: field studies of dolphins and whales. University of Chicago Press, Chicago

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, USA

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Reeves RR, Wang JY, Leatherwood S (1997) The finless porpoise, Neophocaena phocaenoides (G. Cuvier, 1829): a summary of current knowledge and recommendations for conservation action. Asian Mar Biol 14:111–143

    Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  Google Scholar 

  • Rosel PE, Haygood MG, Perrin WF (1995) Phylogenetic relationships among the true porpoises (Cetacea: Phocoenidae). Mol Phylogenet Evol 4:463–474

    Article  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  Google Scholar 

  • Su J (2004) Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont Shelf Res 24(16):1745–1760. doi:10.1016/j.csr.2004.06.005

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  Google Scholar 

  • Teacher AG, Griffiths DJ (2011) HapStar: automated haplotype network layout and visualization. Mol Ecol Resour 11:151–153. doi:10.1111/j.1755-0998.2010.02890.x

    Article  CAS  Google Scholar 

  • Wang JY, Reeves RR (2010) Neophocaena phocaenoides. In: IUCN 2010. IUCN red list of threatened species. www.iucn.redlist.com. Downloaded on 7 June 2013

  • Wang JY, Frasier TR, Yang SC, White BN (2008) Detecting recent speciation events: the case of the finless porpoise (genus Neophocaena). Heredity (Edinb) 101:145–155. doi:10.1038/hdy.2008.40

    Article  CAS  Google Scholar 

  • Xiong Y, Brandley MC, Xu S, Zhou K, Yang G (2009) Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales. BMC Evol Biol 9:20. doi:10.1186/1471-2148-9-20

    Article  Google Scholar 

  • Yang G, Ren WH, Zhou KY, Liu S, Ji GQ, Yan J, Wang LM (2002) Population genetic structure of finless porpoises, Neophocaena phocaenoides, in Chinese waters, inferred from mitochondrial control region sequences. Mar Mamm Sci 18:336–347. doi:10.1111/j.1748-7692.2002.tb01041.x

    Article  Google Scholar 

  • Yang G, Guo L, Bruford MW, Wei F, Zhou K (2008) Mitochondrial phylogeography and population history of finless porpoises in Sino-Japanese waters. Biol J Linn Soc 95:193–204

    Article  Google Scholar 

  • Yoshida H, Yoshioka M, Shirakihara M, Chow S (2001) Population structure of finless porpoises (Neophocaena phocaenoides) in coastal waters of Japan based on mitochondrial DNA sequences. J Mamm 82:123–130. doi:10.1644/1545-1542(2001)082<0123:Psofpn>2.0.Co;2

    Article  Google Scholar 

  • Zheng JS, Xia JH, He SP, Wang D (2005) Population genetic structure of the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis): implications for management and conservation. Biochem Genet 43:307–320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the Ocean Park Conservation Foundation, Hong Kong, the Australia and New Zealand Bank, the National Natural Science Foundation of China (40976082 and 41276147), and the National Key Technology R and D Program (Grant No. 2011BAG07B05-3). We would like to thank OPCFHK for helpful discussions and sample collection. Thanks are also given to those who contributed samples or helped in sample collection, including Mr. Jialin Chen, Mr. Xi Chen and Mr. Yingku Wang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leszek Karczmarski or Yuping Wu.

Additional information

Communicated by M. I. Taylor.

Kuntong Jia and Duan Gui have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, K., Lin, W., Gui, D. et al. Molecular evidence reveals the distinctiveness of Indo-Pacific finless porpoises (Neophocaena phocaenoides) in the Pearl River Estuary and insights into genus Neophocaena’s origin. Mar Biol 161, 1919–1930 (2014). https://doi.org/10.1007/s00227-014-2474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2474-y

Keywords

Navigation