Marine Biology

, Volume 161, Issue 8, pp 1919–1930 | Cite as

Molecular evidence reveals the distinctiveness of Indo-Pacific finless porpoises (Neophocaena phocaenoides) in the Pearl River Estuary and insights into genus Neophocaena’s origin

  • Kuntong Jia
  • Wenzhi Lin
  • Duan Gui
  • Leszek KarczmarskiEmail author
  • Yuping WuEmail author
Original Paper


Much of the knowledge about the wide-ranging finless porpoise species (Neophocaena phocaenoides) remains limited, as well as its phylogenetic relationship with another taxa (N. asiaeorientalis) in genus Neophocaena. Using 11 microsatellite loci, we first investigated population differentiation of N. phocaenoides within the Pearl River Estuary (PRE). We then used mtDNA control region (CR) and cytochrome b (cyt b) sequences from the PRE population (75) as well as those from other geographic populations to reveal the divergence level and phylogeny of the PRE N. phocaenoides. Pairwise F ST analysis with mtDNA CR sequences determined that the PRE population was highly differentiated from other putative populations (with the closest population 400-km away in the Taiwan Strait) (F ST = 0.388–0.764, p < 0.01). The level of genetic divergence between the PRE and its conspecific population was as high as comparisons between the two subspecies under N. asiaeorientalis (F ST = 0.361, p < 0.01). Our results also revealed contrasting demographic histories between the PRE and the other geographic finless porpoise populations (the Taiwan Strait population, the southern and northern Yellow Sea population and the middle Yangtze River population), which suggested stability in the warmer waters of the Indo-Pacific and expansions in the colder waters of the North Pacific. Phylogenetic trees created using cyt b data indicated that some haplotypes exclusive to the PRE population were basal to the rest of the genus. Based on these results, we argue that the genus Neophocaena originated in tropical waters (because the PRE is the most southern location sampled, i.e., the closest location to tropical waters).


Control Region Neighbor Join Pearl River Estuary Taiwan Strait Finless Porpoise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research was supported by the Ocean Park Conservation Foundation, Hong Kong, the Australia and New Zealand Bank, the National Natural Science Foundation of China (40976082 and 41276147), and the National Key Technology R and D Program (Grant No. 2011BAG07B05-3). We would like to thank OPCFHK for helpful discussions and sample collection. Thanks are also given to those who contributed samples or helped in sample collection, including Mr. Jialin Chen, Mr. Xi Chen and Mr. Yingku Wang.

Supplementary material

227_2014_2474_MOESM1_ESM.doc (694 kb)
Supplementary material 1 (DOC 693 kb)


  1. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Evol Syst 18:489–522. doi: 10.1146/ Google Scholar
  2. Barros N, Jefferson TA, Parsons E (2002) Food habits of finless porpoises (Neophocaena phocaenoides) in Hong Kong waters. Raffles Bull Zool 50:115–124Google Scholar
  3. Barros NB, Jefferson TA, Parsons E (2004) Feeding habits of Indo-Pacific humpback dolphins (Sousa chinensis) stranded in Hong Kong. Aquat Mamm 30:179–188CrossRefGoogle Scholar
  4. Chen L, Yang G (2008) Development of tetranucleotide microsatellite loci for the finless porpoise (Neophocaena phocaenoides). Conserv Genet 9:1033–1035. doi: 10.1007/s10592-007-9443-7 CrossRefGoogle Scholar
  5. Chen CTA, Wang SL, Wang BJ, Pai SC (2001) Nutrient budgets for the South China Sea basin. Mar Chem 75:281–300. doi: 10.1016/S0304-4203(01)00041-X CrossRefGoogle Scholar
  6. Chen L, Bruford M, Yang G (2007) Isolation and characterization of microsatellite loci in the finless porpoise (Neophocaena phocaenoides). Mol Ecol Notes 7:1129–1131. doi: 10.1111/j.1471-8286.2007.01803.x CrossRefGoogle Scholar
  7. Chen L, Bruford MW, Xu SX, Zhou KY, Yang G (2010) Microsatellite variation and significant population genetic structure of endangered finless porpoises (Neophocaena phocaenoides) in Chinese coastal waters and the Yangtze River. Mar Biol 157:1453–1462. doi: 10.1007/s00227-010-1420-x CrossRefGoogle Scholar
  8. Culik B (2010) Odontocetes. The toothed whales: “Neophocaena phocaenoides”. UNEP/CMS Secretariat, Bonn, Germany.
  9. Davies J (1963) The antitropical factor in cetacean speciation. Evolution 17:107–116Google Scholar
  10. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi: 10.1186/1471-2148-7-214 CrossRefGoogle Scholar
  11. Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192. doi: 10.1093/molbev/msi103 CrossRefGoogle Scholar
  12. Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  13. Engels WR (2009) Exact tests for Hardy–Weinberg proportions. Genetics 183:1431–1441. doi: 10.1534/genetics.109.108977 CrossRefGoogle Scholar
  14. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  15. Fajardo-Mellor L, Berta A, Brownell RL, Boy CC, Goodall NP (2006) The phylogenetic relationships and biogeography of true porpoises (Mammalia: Phocoenidae) based on morphological data. Mar Mamm Sci 22:910–932CrossRefGoogle Scholar
  16. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925Google Scholar
  17. Hamilton H, Caballero S, Collins AG, Brownell RL Jr (2001) Evolution of river dolphins. Proc Biol Sci 268:549–556. doi: 10.1098/rspb.2000.1385 CrossRefGoogle Scholar
  18. Hoelzel AR, Hancock JM, Dover GA (1991) Evolution of the cetacean mitochondrial D-loop region. Mol Biol Evol 8:475–493Google Scholar
  19. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70. doi: 10.2307/4615733 Google Scholar
  20. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefGoogle Scholar
  21. Jacobs DK, Haney TA, Louie KD (2004) Genes, diversity, and geologic process on the Pacific coast. Annu Rev Earth Planet Sci 32:601–652. doi: 10.1146/ CrossRefGoogle Scholar
  22. Jefferson TA, Hung SK (2007) An updated, annotated checklist of the marine mammals of Hong Kong. Mammalia 71(3):105–114. doi: 10.1515/Mamm.2007.021 CrossRefGoogle Scholar
  23. Jefferson TA, Hung SK, Law L, Torey M, Tregenza N (2002) Distribution and abundance of finless porpoises in Hong Kong and adjacent waters of China. Raffles Bull Zool 50:43–55Google Scholar
  24. Jefferson TA, Hung SK, Wursig B (2009) Protecting small cetaceans from coastal development: impact assessment and mitigation experience in Hong Kong. Mar Policy 33(2):305–311. doi: 10.1016/j.marpol.2008.07.011 CrossRefGoogle Scholar
  25. Li X, Liu YY, Tzika AC, Zhu Q, Van Doninck K, Milinkovitch MC (2011) Analysis of global and local population stratification of finless porpoises Neophocaena phocaenoides in Chinese waters. Mar Biol 158:1791–1804. doi: 10.1007/s00227-011-1692-9 CrossRefGoogle Scholar
  26. Mann J (2000) Cetacean societies: field studies of dolphins and whales. University of Chicago Press, ChicagoGoogle Scholar
  27. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, USAGoogle Scholar
  28. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  29. Reeves RR, Wang JY, Leatherwood S (1997) The finless porpoise, Neophocaena phocaenoides (G. Cuvier, 1829): a summary of current knowledge and recommendations for conservation action. Asian Mar Biol 14:111–143Google Scholar
  30. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569Google Scholar
  31. Rosel PE, Haygood MG, Perrin WF (1995) Phylogenetic relationships among the true porpoises (Cetacea: Phocoenidae). Mol Phylogenet Evol 4:463–474CrossRefGoogle Scholar
  32. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefGoogle Scholar
  33. Su J (2004) Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont Shelf Res 24(16):1745–1760. doi: 10.1016/j.csr.2004.06.005 CrossRefGoogle Scholar
  34. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 CrossRefGoogle Scholar
  35. Teacher AG, Griffiths DJ (2011) HapStar: automated haplotype network layout and visualization. Mol Ecol Resour 11:151–153. doi: 10.1111/j.1755-0998.2010.02890.x CrossRefGoogle Scholar
  36. Wang JY, Reeves RR (2010) Neophocaena phocaenoides. In: IUCN 2010. IUCN red list of threatened species. Downloaded on 7 June 2013
  37. Wang JY, Frasier TR, Yang SC, White BN (2008) Detecting recent speciation events: the case of the finless porpoise (genus Neophocaena). Heredity (Edinb) 101:145–155. doi: 10.1038/hdy.2008.40 CrossRefGoogle Scholar
  38. Xiong Y, Brandley MC, Xu S, Zhou K, Yang G (2009) Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales. BMC Evol Biol 9:20. doi: 10.1186/1471-2148-9-20 CrossRefGoogle Scholar
  39. Yang G, Ren WH, Zhou KY, Liu S, Ji GQ, Yan J, Wang LM (2002) Population genetic structure of finless porpoises, Neophocaena phocaenoides, in Chinese waters, inferred from mitochondrial control region sequences. Mar Mamm Sci 18:336–347. doi: 10.1111/j.1748-7692.2002.tb01041.x CrossRefGoogle Scholar
  40. Yang G, Guo L, Bruford MW, Wei F, Zhou K (2008) Mitochondrial phylogeography and population history of finless porpoises in Sino-Japanese waters. Biol J Linn Soc 95:193–204CrossRefGoogle Scholar
  41. Yoshida H, Yoshioka M, Shirakihara M, Chow S (2001) Population structure of finless porpoises (Neophocaena phocaenoides) in coastal waters of Japan based on mitochondrial DNA sequences. J Mamm 82:123–130. doi: 10.1644/1545-1542(2001)082<0123:Psofpn>2.0.Co;2 CrossRefGoogle Scholar
  42. Zheng JS, Xia JH, He SP, Wang D (2005) Population genetic structure of the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis): implications for management and conservation. Biochem Genet 43:307–320CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine SciencesSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Guangdong Pearl River Estuary Chinese White Dolphin National Nature ReserveZhuhaiPeople’s Republic of China
  3. 3.The Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongCape d’Aguilar, Shek OHong Kong

Personalised recommendations