Marine Biology

, Volume 161, Issue 8, pp 1883–1893 | Cite as

New genetic markers to identify European resistant abalone to vibriosis revealed by high-resolution melting analysis, a sensitive and fast approach

  • Anne-Leila MeistertzheimEmail author
  • Isabelle Calvès
  • Valérie Roussel
  • Alain Van Wormhoudt
  • Jean Laroche
  • Sylvain Huchette
  • Christine Paillard
Original Paper


Increasing temperature of seawater is often associated with increased exposure incidence of disease in field and in aquaculture populations. Numerous episodic mass mortalities of the abalone Haliotis tuberculata have been observed along the northern Brittany coast of France caused by a complex interaction between the host, pathogen and environmental factors. Here, we evaluated the potential of high-resolution melting (HRM) analysis for mutation genotyping and development of genetic markers for resistance to vibriosis in the gastropod species H. tuberculata. Small amplicon assays were developed and revealed genetic polymorphism between surviving and susceptible abalone obtained after two successive infections of aquaculture families in controlled conditions. Together with specific COI haplotypes, we identified particular genotypes in nascent polypeptide-associated complex subunit alpha and ferritin genes linked to the susceptibility or resistance of abalone to vibriosis. Selection of genitors based on these genes may increase the proportion in offspring of resistant individuals of more than 76 %. Finally, HRM assays constitute a very efficient genotyping tool to validate the genetic markers on a representative number of individuals of wild populations and thus identify future resistant genitors for aquaculture or conservation purposes.


Ferritin Vibrio FSSW Parentage Assignment Resistant Individual 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors declare no competing financial interests and thank Jeanine Almany for correcting the English. The authors also acknowledge Emilie Boissin for her help for parentage assignment in COLONY. This research program was financially supported by (1) the European program SUDEVAB (Grant Agreement no 222 156), (2) a CPER—FEDER program for the sequencing part and (3) by the EVOLFISH program (financed by the National Agency for Research-VMCS, Paris, France).

Supplementary material

227_2014_2470_MOESM1_ESM.pdf (86 kb)
Supplementary material 1 (PDF 85 kb)
227_2014_2470_MOESM2_ESM.docx (19 kb)
Supplementary material 2 (DOCX 19 kb)
227_2014_2470_MOESM3_ESM.docx (14 kb)
Supplementary material 3 (DOCX 13 kb)


  1. Aykanat T, Heath J, Dixon B, Heath D (2012) Additive, non-additive and maternal effects of cytokine transcription in response to immunostimulation with Vibrio vaccine in Chinook salmon (Oncorhynchus tshawytscha). Immunogenetics 64(9):691–703CrossRefGoogle Scholar
  2. Baker-Austin C, Trinanes JA, Taylor NGH, Hartnell R, Siitonen A, Martinez-Urtaza J (2013) Emerging vibrio risk at high latitudes in response to ocean warming. Nat Clim Change 3(1):73–77CrossRefGoogle Scholar
  3. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proctostasis for disease intervention. Science 319(5865):916–919. doi: 10.1126/science.1141448 CrossRefGoogle Scholar
  4. Bao Y, Li L, Zhang G (2010) Polymorphism of the superoxide dismutase gene family in the bay scallop (Argopecten irradians) and its association with resistance/susceptibility to Vibrio anguillarum. Dev Comp Immunol 34(5):553–561CrossRefGoogle Scholar
  5. Baranski M, Loughnan S, Austin CM, Robinson N (2006) A microsatellite linkage map of the black lip abalone, Haliotis rubra. Anim Genet 37(6):563–570CrossRefGoogle Scholar
  6. Barton NH (2000) Genetic hitchhiking. Philos Trans R Soc Lond B 355(1403):1553–1562CrossRefGoogle Scholar
  7. Beck G, Ellis TW, Habicht GS, Schluter SF, Marchalonis JJ (2002) Evolution of the acute phase response: iron release by echinoderm(Asterias forbesi) coelomocytes, and cloning of an echinoderm ferritin molecule. Dev Comp Immunol 26(1):11–26CrossRefGoogle Scholar
  8. Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (2004) GENETIX, logiciel sous WindowsTM pour la genetique des populations. Laboratoire Genome et Populations, CNRS UPR 9060, Universite de Montpellier II, Montpellier, FranceGoogle Scholar
  9. Bezemer B, Butt D, Nell J, Adlard R, Raftos D (2006) Breeding for QX disease resistance negatively selects one form of the defensive enzyme, phenoloxidase Sydney rock oysters. Fish Shellfish Immunol 20(4):627–636CrossRefGoogle Scholar
  10. Brulle F, Jeffroy F, Sp Madec, Nicolas J-L, Paillard C (2012) Transcriptomic analysis of Ruditapes philippinarum hemocytes reveals cytoskeleton disruption after in vitro Vibrio tapetis challenge. Dev Comp Immunol 38(2):368–376CrossRefGoogle Scholar
  11. Calves I, Lavergne E, Meistertzheim AL, Charrier G, Cabral H, Guinand B, Quiniou L, Laroche J (2013) Genetic structure of the European flounder (Platichthys flesus) considering the southern limit of the species’ range and the potential impact of chemical stress. Mar Ecol Prog Ser 472:257–273CrossRefGoogle Scholar
  12. Cardinaud M, Offret C, Huchette S, Moraga D, Paillard C (2014) The impacts of handling and air exposure on immune parameters, gene expression, and susceptibility to vibriosis of European abalone Haliotis tuberculata. Fish Shellfish Immunol 36(1):1–8CrossRefGoogle Scholar
  13. Chatterjee S, Haldar S (2012) Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J Mar Sci Res Dev S1:002. doi: 10.4172/2155-9910.S1-002 Google Scholar
  14. Cheng W, Hsiao IS, Hsu CH, Chen JC (2004) Change in water temperature on the immune response of taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish Shellfish Immunol 17(3):235–243CrossRefGoogle Scholar
  15. Chessel D, Dufour A, Thioulouse J (2004) The ade 4 package-I- one-table methods. R News 4:5–10Google Scholar
  16. Coustau C, Théron A (2004) Resistant or resisting: seeking consensus terminology. Trends Parasitol 20(5):209–210CrossRefGoogle Scholar
  17. Dang VT, Speck P, Benkendorff K (2012) Influence of elevated temperatures on the immune response of abalone Haliotis rubra. Fish Shellfish Immunol 32(5):732–740CrossRefGoogle Scholar
  18. David E, Boudry P, Degremont L, Tanguy A, Quere N, Samain JF, Moraga D (2007) Genetic polymorphism of glutamine synthetase and delta-9 desaturase in families of Pacific oyster Crassostrea gigas and susceptibility to summer mortality. J Exp Mar Biol Ecol 349(2):272–283CrossRefGoogle Scholar
  19. de Lorgeril J, Zenagui R, Rosa RD, Piquemal D, Bachère E (2012) Whole transcriptome profiling of successful immune response to Vibrio infections in the oyster crassostrea gigas by digital gene expression analysis. PLoS One 6(8):e23142CrossRefGoogle Scholar
  20. De Wit P, Palumbi SR (2013) Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Mol Ecol 22(11):2884–2897CrossRefGoogle Scholar
  21. Dégremont L (2013) Size and genotype affect resistance to mortality caused by OsHV-1 in Crassostrea gigas. Aquaculture 416–417:129–134CrossRefGoogle Scholar
  22. Dégremont L, Ernande B, Bédier E, Boudry P (2007) Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). I. Estimation of genetic parameters for survival and growth. Aquaculture 262:41–53CrossRefGoogle Scholar
  23. Dégremont L, Bédier E, Boudry P (2010) Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). II. Response to selection for survival and its influence on growth and yield. Aquaculture 299:21–29CrossRefGoogle Scholar
  24. Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3(1):22–32CrossRefGoogle Scholar
  25. Doherty CP (2007) Host-pathogen interactions: the role of iron. J Nutr 137(5):1341–1344Google Scholar
  26. Garvin MR, Saitoh K, Gharrett AJ (2012) Application of single nucleotide polymorphisms to non-model species: a technical review. Mol Ecol Resour 10(6):915–934CrossRefGoogle Scholar
  27. Hayes B, Baranski M, Goddard ME, Robinson N (2007) Optimisation of marker assisted selection for abalone breeding programs. Aquaculture 265(1–4):61–69CrossRefGoogle Scholar
  28. Huchette SMH, Clavier J (2004) Status of the ormer (Haliotis tuberculata L.) industry in Europe. J Shellfish Res 23(4):951–955Google Scholar
  29. Huvet A, Herpin A, Dégremont L, Labreuche Y, Samain JF, Cunningham C (2004) The identification of genes from the oyster Crassostrea gigas that are differentially expressed in progeny exhibiting opposed susceptibility to summer mortality. Gene 343:211–220CrossRefGoogle Scholar
  30. IPCC (2007) Climate change 2007. The physical science basis. Working group I, contribution to the fourth assessment report of the IPCC intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  31. Jones OR, Wang J (2010) Colony: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Res 10(3):551–555CrossRefGoogle Scholar
  32. Kang D, Sim C (2013) Identification of Culex complex species using SNP markers based on high-resolution melting analysis. Mol Ecol Res 13(3):369–376CrossRefGoogle Scholar
  33. Kirstein-Miles J, Scior A, Deuerling E, Morimoto RI (2013) The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J 32(10):1451–1468CrossRefGoogle Scholar
  34. Leung TLF, Bates AE (2013) More rapid and severe disease outbreaks for aquaculture at the tropics: implications for food security. J Appl Ecol 50(1):215–222. doi: 10.1111/1365-2644.12017 CrossRefGoogle Scholar
  35. Li F, Niu B, Huang Y, Meng Z (2012) Application of high-resolution DNA melting for genotyping in lepidopteran non-model species: Ostrinia furnacalis (Crambidae). PLoS One 7(1):e29664CrossRefGoogle Scholar
  36. Liu X, Liu X, Guo X, Gao Q, Zhao H, Zhang G (2006) A preliminary genetic linkage map of the Pacific abalone Haliotis discus hannai ino. Mar Biotechnol 8(4):386–397CrossRefGoogle Scholar
  37. Maiti B, Khushiramani R, Tyagi A, Karunasagar I, Karunasagar I (2010) Recombinant ferritin protein protects Penaeus monodon infected by pathogenic Vibrio harveyi. Dis Aquat Org 88:99–105CrossRefGoogle Scholar
  38. Meistertzheim AL, Calves I, Artigaud S, Friedman CS, Laroche J, Paillard C, Ferec C (2012) High resolution melting analysis for fast and cheap polymorphism screening of marine populations. Protoc Exch. doi: 10.1038/protex.2012.015 Google Scholar
  39. Metzker ML (2010) Sequencing technologies: the next generation. Nat Rev Genet 11(1):31–46CrossRefGoogle Scholar
  40. Moore JD, Marshman BC, Chun CSY (2011) Health and survival of red abalone Haliotis rufescens from San Miguel Island, California, USA, in a laboratory simulation of La Niña and El Niño conditions. J Aquat Anim Health 23(2):78–84CrossRefGoogle Scholar
  41. Nicolas JL, Basuyaux O, Mazurie J, Thebault A (2002) Vibrio carchariae, a pathogen of the abalone Haliotis tuberculata. Dis Aquat Org 50(1):35–43CrossRefGoogle Scholar
  42. Nowak TS, Woodards AC, Jung Y, Adema CM, Loker ES (2004) Identification of transcripts generated during the response of resistant Biomphalaria glabrata to Schistosoma mansoni infection using suppression subtractive hybridization. J Parasitol 90(5):1034–1040CrossRefGoogle Scholar
  43. Pespeni MH, Garfield DA, Manier MK, Palumbi SR (2011) Genome-wide polymorphisms show unexpected targets of natural selection. Proc R Soc B 279(1732):1412–1420CrossRefGoogle Scholar
  44. Pillay TVR, Kutty MN (2005) Aquaculture: principles and practices, 2nd edn. Blackwell publishing, New YorkGoogle Scholar
  45. Poland Biophysics Department University, Duesseldorf,
  46. Qi L, Yanhong X, Ruihai Y, Akihiro K (2007) An AFLP genetic linkage map of Pacific abalone (Haliotis discus hannai). J Ocean Univ China 6(3):259–267CrossRefGoogle Scholar
  47. Raimondi PT, Wilson CM, Ambrose RF, Engle JM, Minchinton TE (2002) Continued declines of black abalone along the coast of California: are mass mortalities related to El Niño events? Mar Ecol Prog Ser 242:143–152. doi: 10.3354/meps242143 CrossRefGoogle Scholar
  48. Recalcati S, Invernizzi P, Arosio P, Cairo G (2008) New functions for an iron storage protein: the role of ferritin in immunity and autoimmunity. J Autoimmun 30(1–2):84–89CrossRefGoogle Scholar
  49. Rogers-Bennett L, Dondanville RF, Moore JD, Vilchis LI (2010) Response of red abalone reproduction to warm water, starvation, and disease stressors: implications of ocean warming. J Shellfish Res 29(3):599–611CrossRefGoogle Scholar
  50. Romero A, Novoa B, Figueras A (2012) Genomics, immune studies and diseases in bivalve aquaculture. Invertebr Surviv J 9:110–121Google Scholar
  51. Roussel V, Huchette S, Van Wormhoudt A (2010) Isolation and characterization of eight microsatellite loci in the European abalone, Haliotis tuberculata. Mol Ecol Res 10:751–754Google Scholar
  52. Roussel V, Charreyron J, Labarre S, Van Wormhoudt A, Huchette S (2013) First steps on technological and genetic improvement of European abalone (Haliotis tuberculata) based on investigations in full-sib families. Open J Genet 3:224–233. doi: 10.4236/ojgen.2013.33025 CrossRefGoogle Scholar
  53. Samain JF, McCombie H (2007) Mortalités estivales de l’huître creuse Crassostrea gigas. Défi MOREST, IfremerGoogle Scholar
  54. Samain JF, Dégremont L, Soletchnik P, Haure J, Bédier E, Ropert M, Moal J, Huvet A, Bacca H, Van Wormhoudt A (2007) Genetically based resistance to summer mortality in the Pacific oyster (Crassostrea gigas) and its relationship with physiological, immunological characteristics and infection processes. Aquaculture 268(1–4):227–243CrossRefGoogle Scholar
  55. Seeb JE, Pascal CE, Grau ED, Seeb LW, Templin WD, Harkins T, Roberts SB (2012) Transcriptome sequencing and high-resolution melt analysis advance single nucleotide polymorphism discovery in duplicated salmonids. Mol Ecol Res 11(2):335–348CrossRefGoogle Scholar
  56. Selvamani MJP, Degnan SM, Degnan BM (2001) Microsatellite genotyping of individual abalone larvae: parentage assignment in aquaculture. Mar Biotechnol 3(5):478–485CrossRefGoogle Scholar
  57. Smith BL, Lu CP, Alvarado Bremer JR (2010) High-resolution melting analysis (HRMA): a highly sensitive inexpensive genotyping alternative for population studies. Mol Ecol Res 10(1):193–196CrossRefGoogle Scholar
  58. Taris N, Lang RP, Reno PW, Camara MD (2009) Transcriptome response of the Pacific oyster (Crassostrea gigas) to infection with Vibrio tubiashii using cDNA AFLP differential display. Anim Genet 40(5):663–677CrossRefGoogle Scholar
  59. Tolmasky ME, Crosa JH (1991) Regulation of plasmid-mediated iron transport and virulence in Vibrio anguillarum. Biol Met 4(1):33–35CrossRefGoogle Scholar
  60. Travers MA, Barbou A, Le Goïc N, Huchette S, Paillard C, Koken M (2008a) Construction of a stable GFP tagged Vibrio harveyi and description of European abalone Haliotis tuberculata vibriosis. FEMS Microbiol Lett 289(1):34–40CrossRefGoogle Scholar
  61. Travers MA, Le Goïc N, Huchette S, Koken M, Paillard C (2008b) Summer immune depression associated with increased susceptibility of the European abalone, Haliotis tuberculata to Vibrio harveyi infection. Fish Shellfish Immunol 25:800–808CrossRefGoogle Scholar
  62. Travers MA, Basuyaux O, Le Goïc N, Huchette S, Nicolas JL, Koken M, Paillard C (2009a) Influence of temperature and spawning effort on Haliotis tuberculata mortalities caused by Vibrio harveyi: an example of emerging vibriosis linked to global warming. Glob Change Biol 15(6):1365–1376CrossRefGoogle Scholar
  63. Travers MA, Le Bouffant R, Friedman CS, Buzin F, Cougard B, Huchette S, Koken M, Paillard C (2009b) Pathogenic Vibrio harveyi in contrast to non-pathogenic strains, intervenes with the p38 MAPK pathway to avoid an abalone haemocyte immune response. J Cell Biochem 106(1):152–160CrossRefGoogle Scholar
  64. Travers MA, Meistertzheim AL, Cardinaud M, Friedman CS, Huchette S, Moraga D, Paillard C (2010) Gene expression patterns of sensitive and resistant abalone, Haliotis tuberculata, in response to the pathogenic Vibrio harveyi. J Invertebr Pathol 105(3):289–297CrossRefGoogle Scholar
  65. Van Wormhoudt A, Le Bras Y, Huchette S (2009) Haliotis marmorata from Senegal; a sister species of Haliotis tuberculata: morphological and molecular evidence. Biochem Syst Ecol 37(6):747–755CrossRefGoogle Scholar
  66. Van Wormhoudt A, Roussel V, Courtois G, Huchette S (2011) Mitochondrial DNA introgression in the European abalone Haliotis tuberculata tuberculata: evidence for experimental mtDNA paternal inheritance and a natural hybrid sequence. Mar Biotechnol 13(3):563–574CrossRefGoogle Scholar
  67. Vezzulli L, Brettar I, Pezzati E, Reid PC, Colwell RR, Hofle MG, Pruzzo C (2012) Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J 6(1):21–30CrossRefGoogle Scholar
  68. Wittwer CT (2009) High-resolution DNA melting analysis: advancements and limitations. Hum Mutat 30(6):857–859CrossRefGoogle Scholar
  69. Wyckoff E, Mey A, Payne S (2007) Iron acquisition in Vibrio cholerae. Biometals 20(3):405–416CrossRefGoogle Scholar
  70. Yue X, Wang H, Huang X, Wang C, Chai X, Wang C, Liu B (2012) Single nucleotide polymorphisms in i-type lysozyme gene and their correlation with vibrio-resistance and growth of clam Meretrix meretrix based on the selected resistance stocks. Fish Shellfish Immunol 33(3):559–568CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Anne-Leila Meistertzheim
    • 1
    • 2
    Email author
  • Isabelle Calvès
    • 2
  • Valérie Roussel
    • 3
  • Alain Van Wormhoudt
    • 3
  • Jean Laroche
    • 2
  • Sylvain Huchette
    • 4
  • Christine Paillard
    • 2
  1. 1.Centre de Recherches Insulaires et Observatoire de l’Environnement de Polynésie Française (CRIOBE), USR 3278 CNRS/EPHE/UPVD, Laboratoire d’Excellence “CORAIL” Bâtiment CBETMUniversité de PerpignanPerpignan CedexFrance
  2. 2.Laboratoire des Sciences de l’Environnement Marin, UMR 6539 CNRS/UBO/IRD/Ifremer Institut Universitaire Européen de la MerUniversité de Bretagne OccidentalePlouzanéFrance
  3. 3.Station de Biologie Marine, UMR 7208 BOREAMuséum National d’Histoire NaturelleConcarneauFrance
  4. 4.France HaliotisPlouguerneauFrance

Personalised recommendations