Marine Biology

, Volume 161, Issue 8, pp 1851–1859 | Cite as

Effects of pCO2 on the interaction between an excavating sponge, Cliona varians, and a hermatypic coral, Porites furcata

  • Amber D. Stubler
  • Bradley T. Furman
  • Bradley J. PetersonEmail author
Original Paper


Rising dissolved pCO2 is a mounting threat to coral reef ecosystems. While the biological and physiological impacts of increased pCO2 are well documented for many hermatypic corals, the potential effects on bioerosion processes remain largely unknown. Increases in pCO2 are likely to modify the direct interactions between corals and bioeroders, such as excavating sponges, with broad implications for the balance between biologically mediated deposition and erosion of carbonate in reef communities. This study investigated the effects of three levels of CO2 (present-day, mid-century and end-of-century projections) on the direct interaction between a bioeroding sponge, Cliona varians, and a Caribbean coral, Porites furcata. Increased pCO2 concentrations had no effect on the attachment rates of C. varians to the corals, and we observed no significant impact of pCO2 on the survival of either the coral or sponges. However, exposure to end-of-century levels of CO2-dosing (~750 μatm) reduced calcification in P. furcata and led to a significant increase in sponge-mediated erosion of P. furcata. These findings demonstrate that pCO2 can enhance erosional efficiency without impacting survival or competitive vigor in these two species. While few studies have considered the influence of pCO2 on the competitive outcomes of interactions between corals and other reef organisms, our study suggests that assessing the impacts of changing pCO2 on species interactions is crucial to adequately predict ecosystem-level responses in the future.


Species interactions Bioerosion Cliona Carbon dioxide Acidification 



We would like to acknowledge R. Collin, G. Jacome, P. Gondola and the staff at the Smithsonian Tropical Research Institute Bocas del Toro Research Station for their support and assistance. Many thanks to X. Boza and E. Low-Decarie for their field and lab support and to J. Ceballos for assistance with the SEM images. Funding for this research was provided by a Short Term Fellowship awarded to A. Stubler by the Smithsonian Tropical Research Institute. Sigma Xi Grants-in-Aid of Research and the American Museum of Natural History’s Lerner-Gray Fund for Marine Research provided additional financial support.

Supplementary material

227_2014_2466_MOESM1_ESM.pdf (296 kb)
Supplementary material 1 (PDF 296 kb)


  1. Aerts L (1998) Sponge/coral interactions in Caribbean reefs: analysis of overgrowth patterns in relation to species identity and cover. Mar Ecol Prog Ser 175:241–249CrossRefGoogle Scholar
  2. Aerts L, van Soest RWM (1997) Quantification of sponge/coral interactions in a physically stressed reef community, NE Colombia. Mar Ecol Prog Ser 148:125–134CrossRefGoogle Scholar
  3. Albright R, Langdon C (2011) Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Glob Change Biol 17(7):2478–2487. doi: 10.1111/j.1365-2486.2011.02404.x CrossRefGoogle Scholar
  4. Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution and net ecosystem calcification. Ann Rev Mar Sci 5:321–348CrossRefGoogle Scholar
  5. Anthony KR, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105(45):17442–17446. doi: 10.1073/pnas.0804478105 CrossRefGoogle Scholar
  6. Asgaard U, Bromley RG (2008) Echinometrid sea urchins, their trophic styles and corresponding bioerosion. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 279–304CrossRefGoogle Scholar
  7. Borges AV (2003) Atmospheric CO2 flux from mangrove surrounding waters. Geophys Res Lett 30:1558–1562. doi: 10.1029/2003gl017143 CrossRefGoogle Scholar
  8. Bruggemann JH, van Kessel AM, van Rooij JM, Breeman AM (1996) Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implications of fish size, feeding mode and habitat use. Mar Ecol Prog Ser 134:59–71CrossRefGoogle Scholar
  9. Caldeira K, Wickett M (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  10. Caldeira K, Wickett M (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110: npGoogle Scholar
  11. Carballo JL, Bautista E, Nava H, Cruz-Barraza JA, Chavez JA (2013) Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol Evol 3:872–886. doi: 10.1002/ece3.452 CrossRefGoogle Scholar
  12. Chiappone M, Rutten LM, Miller SL, Swanson DW (2007) Large-scale distributional patterns of the encrusting and excavating sponge Cliona deletrix Pang on Florida Keys coral substrates. In: Porifera research: biodiversity, innovation and sustainability. Proceedings of 7th International Sponge Symposium, pp 255–263Google Scholar
  13. Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weight technique. Mar Biol 101:389–395CrossRefGoogle Scholar
  14. Diaz-Pulido G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O (2012) Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. J Phycol 48:32–39. doi: 10.1111/j.1529-8817.2011.01084.x CrossRefGoogle Scholar
  15. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192. doi: 10.1146/annurev.marine.010908.163834 CrossRefGoogle Scholar
  16. Duckworth AR, Peterson BJ (2012) Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Mar Biol 160:27–35. doi: 10.1007/s00227-012-2053-z CrossRefGoogle Scholar
  17. Duckworth AR, West L, Vansach T, Stubler A, Hardt M (2012) Effects of water temperature and pH on growth and metabolite biosynthesis of coral reef sponges. Mar Ecol Prog Ser 462:67–77. doi: 10.3354/meps09853 CrossRefGoogle Scholar
  18. Dufault AM, Cumbo VR, Fan TY, Edmunds PJ (2012) Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proc Biol Sci 279:2951–2958. doi: 10.1098/rspb.2011.2545 CrossRefGoogle Scholar
  19. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRefGoogle Scholar
  20. Fang JK, Mello-Athayde MA, Schonberg CH, Kline DI, Hoegh-Guldberg O, Dove S (2013) Sponge biomass and bioerosion rates increase under ocean warming and acidification. Glob Change Biol 19:3581–3591. doi: 10.1111/gcb.12334 CrossRefGoogle Scholar
  21. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366CrossRefGoogle Scholar
  22. Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811CrossRefGoogle Scholar
  23. Gattuso J-P, Lavigne H (2009) Technical note: approaches and software tools to investigate the impact of ocean acidification. Biogeosciences 6:2121–2133CrossRefGoogle Scholar
  24. Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1997) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46 CrossRefGoogle Scholar
  25. Goreau T, Hartman WD (1963) Boring sponges as controlling factors in the formation and maintenance of reefs. In: Mechanisms of hard tissue destruction, vol 75. pp 25–54Google Scholar
  26. Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann NY Acad Sci 1134:320–342CrossRefGoogle Scholar
  27. Hatch W (1980) The implication of carbonic anhydrase in the physiological mechanism of penetration of the carbonate substrata by the marine burrowing sponge Cliona celata (Demospongiae). Biol Bull 159:135–147CrossRefGoogle Scholar
  28. Hill MS (1996) Symbiotic zooxanthellae enhance boring and growth rates of the tropical sponge Anthosigmella varians forma varians. Mar Biol 125:649–654CrossRefGoogle Scholar
  29. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  30. Hoegh-Guldberg O et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi: 10.1126/science.1152509 CrossRefGoogle Scholar
  31. Holmes KE (2000) Effects of eutrophication on bioeroding sponge communities with the description of a new West Indian sponges, Cliona spp. (Porifera: Hadromerida: Clionidae). Invert Biol 119:125–138CrossRefGoogle Scholar
  32. Hutchings P (2008) Role of polychaetes in bioerosion of coral substrates. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 249–264CrossRefGoogle Scholar
  33. IPCC (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  34. Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. UNESCO Monogr Oce Meth 5:529–542Google Scholar
  35. Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483CrossRefGoogle Scholar
  36. Kleeman K (2008) Parapholas quadrizonata (Spengler 1792), dominating dead-coral boring bivalve from the Maldives, Indian Ocean. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 265–278CrossRefGoogle Scholar
  37. Kleypas JA (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120. doi: 10.1126/science.284.5411.118 CrossRefGoogle Scholar
  38. Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2007) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117. doi: 10.1038/ngeo100 CrossRefGoogle Scholar
  39. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. doi: 10.3354/meps07802 CrossRefGoogle Scholar
  40. Lopez-Victoria M, Zea S (2004) Storm-mediated coral colonization by an excavating Caribbean sponge. Clim Res 26:251–256CrossRefGoogle Scholar
  41. MacGeachy J (1977) Factors controlling sponge boring in Barbados reef corals. Proceedings of the 3rd international coral reef symposium 2: 477–483Google Scholar
  42. Nava H, Carballo JL (2008) Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. J Exp Biol 211:2827–2831. doi: 10.1242/jeb.019216 CrossRefGoogle Scholar
  43. Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11:92–108CrossRefGoogle Scholar
  44. Orr JC et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  45. Perry CT (1998) Macroborers within coral framework at Discovery Bay, north Jamaica: species distribution and abundance, and effects on coral preservation. Coral Reefs 17:277–287CrossRefGoogle Scholar
  46. Pomponi S (1980) Cytological mechanisms of calcium carbonate excavation by boring sponges. Int Rev Cytol 65:301–319CrossRefGoogle Scholar
  47. Putnam HM, Edmunds PJ (2011) The physiological response of reef corals to diel fluctuations in seawater temperature. J Exp Mar Biol Ecol 396:216–223. doi: 10.1016/j.jembe.2010.10.026 CrossRefGoogle Scholar
  48. Reyes-Nivia C, Diaz-Pulido G, Kline D, Ove Hoegh G, Dove S (2013) Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Glob Change Biol 19:1919–1929. doi: 10.1111/gcb.12158 CrossRefGoogle Scholar
  49. Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (2011) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, LuxembourgGoogle Scholar
  50. Rose CS, Risk MJ (1985) Increase in Cliona deletrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Mar Ecol 6(4):345–363CrossRefGoogle Scholar
  51. Rützler K (2002) Impact of crustose clinoid sponges on Caribbean reef corals. Acta Geol Hisp 37:61–72Google Scholar
  52. R Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  53. Schönberg CHL (2000) Sponges of the ‘Cliona viridis complex’: a key for species identification. Proceedings of the 9th international coral reef symposium (Bali, Indonesia)Google Scholar
  54. Schönberg CHL (2002) Substrate effects on the bioeroding demosponge Cliona orientalis. 1 Bioerosion rates. Mar Ecol 23:313–326CrossRefGoogle Scholar
  55. Schönberg CHL, Ortiz J-C (2008) Is sponge bioerosion increasing? In: Proceedings of the 11th international coral reef symposium, Fort Lauderdale, FL, USA, p 527–530Google Scholar
  56. Siegrist HG, Bowman RG, Randall RH, Stifel PB (1992) Diagenetic effects related to hot-water effluent in a modern reef on Guam. Pac Sci 46:379Google Scholar
  57. Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochem Cycles 23(3) doi: 10.1029/2008gb003286
  58. Vicente VP (1978) An ecological evaluation of the West Indian demosponge Anthosigmella varians (Hadromerida: Spirastrellidae). Bull Mar Sci 28:771–777Google Scholar
  59. Ward-Paige CA, Risk MJ, Sherwood OA, Jaap WC (2005) Clionid sponge surveys on the Florida reef tract suggest land-based nutrient inputs. Mar Pollut Bull 51:570–579. doi: 10.1016/j.marpolbul.2005.04.006 CrossRefGoogle Scholar
  60. Williams EH, Bartels P, Bunkley-Williams P (1999) Predicted disappearance of coral-reef ramparts: a direct result of major ecological disturbances. Glob Change Biol 5:839–845CrossRefGoogle Scholar
  61. Wisshak M, Schonberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS One 7(9):e45124CrossRefGoogle Scholar
  62. Wisshak M, Schönberg CHL, Form A, Freiwald A (2014) Sponge bioerosion accelerated by ocean acidification across species and latitudes? Helgol Mar Res 68(2):253–262. doi: 10.1007/s10152-014-0385-4 CrossRefGoogle Scholar
  63. Zablocki JA, Andersson AJ, Bates NR (2011) Diel aquatic CO2 system dynamics of a Bermudian mangrove environment. Aquat Geochem 17:841–859. doi: 10.1007/s10498-011-9142-3 CrossRefGoogle Scholar
  64. Zundelevich A, Lazar B, Ilan M (2007) Chemical versus mechanical bioerosion of coral reefs by boring sponges–lessons from Pione cf. vastifica. J Exp Biol 210:91–96. doi: 10.1242/jeb.02627 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Amber D. Stubler
    • 1
  • Bradley T. Furman
    • 1
  • Bradley J. Peterson
    • 1
    Email author
  1. 1.School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookUSA

Personalised recommendations