Advertisement

Marine Biology

, Volume 161, Issue 8, pp 1787–1798 | Cite as

Relevant scales of variability of the benthic allochthonous microalga Chrysophaeum taylorii

  • Sarah CaronniEmail author
  • Maria Anna Delaria
  • Augusto Navone
  • Pieraugusto Panzalis
  • Nicola Sechi
  • Giulia Ceccherelli
Original Paper

Abstract

Chrysophaeum taylorii (Pelagophyceae) is an allochthonous benthic microalga recently recorded in the Mediterranean Sea. During summer, the occurrence of C. taylorii is usually visible to the naked eye due to the large amount of mucilage this species produces. Information on the spatio-temporal variability of this species and on the predictability of massive mucilage events is still scarce and requires to define ad hoc managing strategies of major bloom events. The aim of this work was to identify the relevant scales of variation in the abundance of C. taylorii abundance and to estimate the relative recurrence of its blooms, testing the hypothesis that mucilage was dependent on the cell density. The first approach was the identification of the most appropriate sampling procedure to estimate benthic cell abundance of C. taylorii. The second one was the estimation of the magnitude of variation in C. taylorii cell abundance attributable to each of several spatial (areas, sites, zones and replicates) and temporal scales (fortnights and years) in the Marine Protected Area of Tavolara Punta Coda Cavallo (Western Mediterranean Sea). The results indicate fortnight and year as the most relevant scales of variability in the cell abundance of C. taylorii and highlight the unimportance of small spatial scales (zone and replicates) to the species variability. The collected data also evidence the absence of a direct relationship between the cell density of C. taylorii and the production of mucilage. In conclusion, these results indicate that patterns in the cell abundance of C. taylorii vary notably depending on the considered scale and that future investigations on processes affecting its performance will need to consider the relevant scales of variation evidenced.

Keywords

Microalgae Cell Abundance Relevant Scale Benthic Microalgae Mean Square 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are sincerely thankful to Patrik Kraufvelin and to the two anonymous reviewers for improving the manuscript. We are also grateful to Luisa Polastro for the English revision. We thank Salvatore Vitale (MPA), Giovanni Macri and all the students training in the MPA over the study period for the help during the field activities This work was supported by the Tavolara Punta Coda Cavallo MPA.

References

  1. Abbate M, Bordone A, Cerrati G, Lisca A, Peirano A (2007) Variabilità della distribuzione e densità di Ostreopsis ovata nel Golfo della Spezia. Biol Mar Medit 14(2):286–287Google Scholar
  2. Abelson A, Denny M (1997) Settlement of Marine organisms in flow. Annu Rev Ecol Syst 28:317–339CrossRefGoogle Scholar
  3. Accoroni S, Colombo F, Pichierri S, Romagnoli T, Marini M, Battocchi C, Penna A, Totti C (2012a) Ecology of Ostreopsis cf. ovata blooms in the northwestern Adriatic Sea. Cryptogam Algol 33(2):191–198CrossRefGoogle Scholar
  4. Accoroni S, Romagnoli T, Pichierri S, Colombo F, Totti C (2012b) Morphometric analysis of Ostreopsis cf. ovata cells in relation to environmental conditions and bloom phases. Harmful Algae 19:15–22CrossRefGoogle Scholar
  5. Admiraal W (1984) The ecology of estuarine sediment-inhabiting diatoms. Prog Phycol Res 3:269–322Google Scholar
  6. Airoldi L (2000) Responses of algae with different life histories to temporal and spatial variability of disturbance in subtidal reefs. Mar Ecol Prog Ser 195:81–92CrossRefGoogle Scholar
  7. Aktan Y, Topaloğlu B (2011) First record of Chrysophaeum taylorii Lewis and Bryan and their benthic mucilaginous aggregates in the Aegean Sea (Eastern Mediterranean). J Black Sea/Mediterr Environ 17(2):159–170Google Scholar
  8. Andrew NL, Mapstone BD (1987) Sampling and the description of spatial pattern in marine ecology. Oceanogr Mar Biol Ann Rev 25:39–90Google Scholar
  9. Archambault P, Bourget E (1999) Influence of shoreline configuration on spatial variation of meroplanktonic larvae, recruitment and diversity of benthic subtidal communities. J Exp Mar Biol Ecol 238(2):161–184CrossRefGoogle Scholar
  10. Auinger BM, Pfandl K, Boenigk J (2008) Improved methodology for identification of protists and microalgae from plankton samples preserved in Lugol’s iodine solution: combining microscopic analysis with single-cell PCR. Appl Environ Microbiol 74(8):2505–2510CrossRefGoogle Scholar
  11. Azovsky AI (2000) Concept of scale in marine ecology: linking the words or the worlds? Web Ecol 1:28–34CrossRefGoogle Scholar
  12. Azovsky AI (2002) Size-dependent species area relationships in benthos, or whether this world is more diverse for microbes? Ecography 25:273–282CrossRefGoogle Scholar
  13. Azovsky AI, Chertoprood E, Saburova M, Polikarpov I (2004) Spatio-temporal variability of micro- and meiobenthic communities in a White Sea intertidal sandflat. Estuar Coast Shelf S 60:663–671CrossRefGoogle Scholar
  14. Benedetti-Cecchi L, Bertocci I, Micheli F, Maggi E, Fosella T, Vaselli S (2003) Implications of spatial heterogeneity for management of marine protected areas (MPAs): examples from assemblages of rocky coasts in the northwest Mediterranean. Mar Env Res 55:429–458CrossRefGoogle Scholar
  15. Bishop ID (2002) Determination of thresholds of visual impact: the case of wind turbines. Environ Plann B 29:707–718CrossRefGoogle Scholar
  16. Blasi F, Delaria M, Caronni S (2013) Prima segnalazione della microalga bentonica Chrysophaeum taylorii Lewis e Bryan lungo le coste laziali. Biol Mar Medit 20(1):120–121Google Scholar
  17. Botsford LW, Micheli F, Hastings A (2003) Principles for the design of marine reserves. Ecol Appl 13:S25–S31CrossRefGoogle Scholar
  18. Brito A, Newton A, Tett P, Fernandes TF (2009) Temporal and spatial variability of microphytobenthos in a shallow lagoon: ria Formosa (Portugal). Estuar Coast Shelf S 83:67–76CrossRefGoogle Scholar
  19. Burkovsky IV, Azovsky AI, Mokievsky VO (1994) Scaling in benthos: from microfauna to macrofauna. Arch Hydrobiol 99:517–535Google Scholar
  20. Cao Y, Williams DD, Larsen DP (2002) Comparison of ecological communities: the problem of sample representativeness. Ecol Monogr 72:41–56CrossRefGoogle Scholar
  21. Caronni S, Ceccherelli G, Navone A, Panzalis P, Pinna S, Sechi N (2011) I popolamenti bentonici nell’Area Marina Protetta Tavolara Punta Coda Cavallo (Sardegna nord-orientale) dopo una fioritura della microalga Chrysophaeum taylorii Lewis e Bryan. Studi Trentini di Scienze Naturali 89:107–110Google Scholar
  22. Chapman MG, Tolhurst TJ, Murphy RJ, Underwood AJ (2010) Complex and inconsistent patterns of variation in benthos, micro-algae and sediment over multiple spatial scales. Mar Ecol Prog Ser 398:33–47CrossRefGoogle Scholar
  23. Cochran WG (1977) Sampling techniques. Wiley, New YorkGoogle Scholar
  24. Cohu S, Thibaut T, Mangialajo L, Labat JP, Passafiume O, Blanfuné A, Simon N, Cottalorda JM, Lemée R (2011) Occurrence of the toxic dinoflagellate Ostreopsis cf. ovata in relation with environmental factors in Monaco (NW Mediterranean). Mar Poll Bull 62(12):2681–2691CrossRefGoogle Scholar
  25. Connell S (2005) Assembly and maintenance of subtidal habitat heterogeneity: synergistic effects of light penetration and sedimentation. Mar Ecol Prog Ser 289:53–61CrossRefGoogle Scholar
  26. Cullen JJ (2008) Observation and prediction of harmful algal blooms. In: Babin M, Roesler CS, Cullen JJ (eds) Real-time coastal observing systems for marine ecosystem dynamics and harmful algal blooms: theory. Instrumentation and Modelling, UESCO, Paris, pp 1–42Google Scholar
  27. Decho AW, Fleeger JW (1988) Microscale dispersion of meiobenthic copepods in response to food-resource patchiness. J Exp Mar Biol Ecol 118:229–243CrossRefGoogle Scholar
  28. Díaz ER, Kraufvelin P, Erlandsson J (2012) Combining gut fluorescence technique and spatial analysis to determine Littorina littorea grazing dynamics in nutrient-enriched and nutrient-unenriched littoral mesocosms. Mar Biol 159:837–852CrossRefGoogle Scholar
  29. Fowler-Walker MJ, Connell SD (2002) Opposing states of subtidal habitat across temperate Australia: consistency and predictability in kelp canopy-benthic associations. Mar Ecol Prog Ser 240:49–56CrossRefGoogle Scholar
  30. Fraschetti S, Terlizzi A, Benedetti-Cecchi L (2005) Patterns of distribution of marine assemblages from rocky shores: evidence of relevant scales of variation. Mar Ecol Prog Ser 296:13–29CrossRefGoogle Scholar
  31. Gerwick WH (1989) Desmethoxyhormothamnione, a new cytotoxic styrylchromone from the marine Cryptophyte Chrysophaeum taylorii. J Nat Prod 52(2):252–256CrossRefGoogle Scholar
  32. Granéli E, Vidyarathna NK, Funari E, Cumaranatunga PRT, Scenati R (2011) Can increases in temperature stimulate blooms of the toxic benthic dinoflagellate Ostreopsis ovata? Harmful Algae 10:165–172CrossRefGoogle Scholar
  33. Hewitt JE, Thrush SF, Cummings VJ, Turner SJ (1998) The effect of changing sampling scales on our ability to detect effects of large-scale processes on communities. J Exp Mar Biol Ecol 227:251–264CrossRefGoogle Scholar
  34. Hicks GRF (1986) Distribution and behaviour of meiofaunal copepods inside and outside seagrass beds. Mar Ecol Prog Ser 31:159–170CrossRefGoogle Scholar
  35. Horne JK, Schneider DC (1995) Spatial variance in ecology. Oikos 74:18–26CrossRefGoogle Scholar
  36. Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar Ecol Prog Ser 155:269–301CrossRefGoogle Scholar
  37. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54(2):187–211CrossRefGoogle Scholar
  38. Jackson AC, Underwood AJ, Murphy RJ, Skilleter GA (2010) Latitudinal and environmental patterns in abundance and composition of epilithic microphytobenthos. Mar Ecol Prog Ser 417:27–38CrossRefGoogle Scholar
  39. Jenkins SG, Partridge ST, Stephenson TR, Farley SD, Robbins CT (2001) Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring. Oecologia 129:336–341Google Scholar
  40. Kotliar NB, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260CrossRefGoogle Scholar
  41. Kraufvelin P, Perus J, Bonsdorff E (2011) Scale-dependent distribution of soft-bottom infauna and possible structuring forces in low diversity systems. Mar Ecol Prog Ser 426:13–28CrossRefGoogle Scholar
  42. Lawton JH (1996) Corncrake pie and prediction in ecology. Oikos 76:3–4CrossRefGoogle Scholar
  43. Levin SA (1992) The problem of pattern and scale in ecology: the robert H MacArthur award lecture. Ecology 73(6):1943–1967CrossRefGoogle Scholar
  44. Lewis IF, Bryan HF (1941) A new protophyte from the dry tortugas. Am J Bot 28:343–348CrossRefGoogle Scholar
  45. Lobban CS, Tsuda RT (2003) Revised checklist of benthic marine macroalgae and seagrasses of Guam and Micronesia. Micronesia 35(36):54–99Google Scholar
  46. Lobban CS, Honda D, Chihara M, Schefter M (1995) Chrysocystis fragilis gen. nov., sp. nov. (Chrysophyceae, Sarcinochrysidales), with notes on other macroscopic Chrysophytes Golden algae) on Guam reefs. Micronesica 28:91–102Google Scholar
  47. Luglié A, Satta C, Padedda B, Pulina S, Sechi N (2008) What is Chrysophaeum taylorii Lewis & Bryan doing in Sardinia (Tyrrhenian Sea, Mediterranean)? Harmful Algae News 36:4–6Google Scholar
  48. MacIntyre HL, Cullen JJ (1995) Fine-scale vertical resolution of chlorophyll and photosynthetic parameters in shallow water benthos. Mar Ecol Prog Ser 122:227–237CrossRefGoogle Scholar
  49. MacIntyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the ‘Secret Garden’ of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19(2A):186–201CrossRefGoogle Scholar
  50. Méléder V, Rincé Y, Barillé L, Gaudin P, Rosa P (2007) Spatiotemporal changes in microphytobenthos assemblages in a macrotidal flat (Bourgneuf Bay, France). J Phycol 43:1177–1190CrossRefGoogle Scholar
  51. Michelet S, Caronni S, Ceccherelli G, Spano G, Sechi N (2010) Variabilità spazio-temporale della microalga Chrysophaeum taylorii Lewis e Bryan lungo le coste nord-orientali della Sardegna. Biol Mar Medit 18(1):264–265Google Scholar
  52. Moreno S, Niell FX (2004) Scales of variability in the sediment chlorophyll content of the shallow Palmones River Estuary, Spain. Estuar Coast Shelf S 60:49–57CrossRefGoogle Scholar
  53. Murphy RJ, Tolhurst TJ, Chapman MG, Underwood AJ (2008) Spatial variation of chlorophyll on estuarine mudflats determined by field-based remote sensing. Mar Ecol Prog Ser 365:45–55CrossRefGoogle Scholar
  54. Nicholas WL, Hodda M (1999) The free-living nematodes of a temperate, high energy, sandy beach: faunal composition and variation over space and time. Hydrobiologia 394:113–127CrossRefGoogle Scholar
  55. Nughes ML, Alvau M, Cappelletti C, Ciutti F, Floris B, Madeddu G, Monni V, Sau M (2005) Prima applicazione degli indici diatomici EPI-D ed IBD nel monitoraggio del Rio Picocca in provincia di Cagliari e confronto con l’IBE. Biologia Ambientale 19(1):233–235Google Scholar
  56. Peters L, Scheifhacken N, Kahlert M, Rothhaupt KO (2005) An efficient in situ method for sampling periphyton in lakes and streams. Arch Hydrobiol 163(1):133–141CrossRefGoogle Scholar
  57. Phlips EJ, Badylak S, Christman M, Wolny J, Brame J, Garland J, Hall JL, Hart J, Landsberg J, Lasi M, Lockwood J, Paperno R, Scheidt D, Staples A, Steidinger K (2011) Scales of temporal and spatial variability in the distribution of harmful algae species in the Indian River Lagoon, Florida, USA. Harmful Algae 10:277–290CrossRefGoogle Scholar
  58. Pinckney J, Sandulli R (1990) Spatial autocorrelation analysis of meiofaunal and microalgal populations on an intertidal sandflat: scale linkage between consumers and resources. Estuar Coast Shelf S 30:341–353CrossRefGoogle Scholar
  59. Reynolds SC (2007) Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578:37–45CrossRefGoogle Scholar
  60. Saburova MA, Polikarpov IG, Burkovsky IV (1995) Spatial structure of an intertidal sandflat microphytobenthic community as related to different spatial scales. Mar Ecol Prog Ser 129:229–239CrossRefGoogle Scholar
  61. Safi KA (2003) Microalgal populations of three New Zealand coastal locations: forcing functions and benthic–pelagic links. Mar Ecol Prog Ser 259:67–78CrossRefGoogle Scholar
  62. Saravia LA, Giorgi A, Momo F (2012) Multifractal spatial patterns and diversity in an ecological succession. PLoS One 7(3):1–8Google Scholar
  63. Schaffelke B, Smith JE, Hewitt CL (2006) Introduced macroalgae—a growing concern. J App Phyco 18:529–541CrossRefGoogle Scholar
  64. Sebens KP (1986) Spatial relationships among encrusting marine organisms in the New England subtidal zone. Ecol Monogr 56:73–96CrossRefGoogle Scholar
  65. Serodio J, Marques da Silva J, Catarino F (1997) Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J Phycol 33:542–553CrossRefGoogle Scholar
  66. Seuront L, Spilmont N (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Physics A 313:513–539CrossRefGoogle Scholar
  67. Spilmont N, Seuront L, Meziane T, Welsh DT (2011) There’s more to the picture than meets the eye: sampling microphytobenthos in a heterogeneous environment. Estuar Coast Shelf S 95:470–476CrossRefGoogle Scholar
  68. Taylor WR (1960) Marine algae of the eastern tropical and subtropical coasts of the Americas. University of Michigan Press, TorontoGoogle Scholar
  69. Taylor WR (1969) Notes on the distribution of West Indian marine algae particularly in the Lesser Antilles. Mich Univ Herb Contrib 9:125–203Google Scholar
  70. Totti C, Accoroni S, Cerino F, Cucchiari E, Romagnoli T (2010) Ostreopsis ovata bloom along the Conero Riviera (northern Adriatic Sea): relationships with environmental conditions and substrata. Harmful Algae 9:233–239CrossRefGoogle Scholar
  71. Underwood AJ (1997) Experiments in ecology. Their logical design and interpretation using analysis of variance. Cambridge University Press, CambridgeGoogle Scholar
  72. Underwood AJ, Chapman MG (1996) Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia 107(2):212–224CrossRefGoogle Scholar
  73. Underwood AJ, Petraitis PS (1993) Structure of intertidal assemblages in different locations: how can local processes be compared? In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, pp 38–51Google Scholar
  74. Underwood AJ, Chapman MG, Connell SD (2000) Observations in ecology: you can’t make progress on processes without understanding the patterns. J Exp Mar Biol Ecol 250:97–115CrossRefGoogle Scholar
  75. Wootton JT (2001) Prediction in complex communities: analysis of empirically derived Markov models. Ecology 82(2):580–598CrossRefGoogle Scholar
  76. Zingone A, Honsell G, Marino D, Montresor M, Socal G (1990) Metodi nell’Ecologia del Plancton Marino: fitoplancton. Nova Thalassia 11:184–187Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sarah Caronni
    • 1
    Email author
  • Maria Anna Delaria
    • 2
  • Augusto Navone
    • 3
  • Pieraugusto Panzalis
    • 3
  • Nicola Sechi
    • 2
  • Giulia Ceccherelli
    • 2
  1. 1.Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
  2. 2.Department of Science for Nature and Environmental ResourcesUniversity of SassariSassariItaly
  3. 3.Marine Protected Area Tavolara Punta Coda CavalloOlbiaItaly

Personalised recommendations