Skip to main content

Advertisement

Log in

Relevant scales of variability of the benthic allochthonous microalga Chrysophaeum taylorii

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Chrysophaeum taylorii (Pelagophyceae) is an allochthonous benthic microalga recently recorded in the Mediterranean Sea. During summer, the occurrence of C. taylorii is usually visible to the naked eye due to the large amount of mucilage this species produces. Information on the spatio-temporal variability of this species and on the predictability of massive mucilage events is still scarce and requires to define ad hoc managing strategies of major bloom events. The aim of this work was to identify the relevant scales of variation in the abundance of C. taylorii abundance and to estimate the relative recurrence of its blooms, testing the hypothesis that mucilage was dependent on the cell density. The first approach was the identification of the most appropriate sampling procedure to estimate benthic cell abundance of C. taylorii. The second one was the estimation of the magnitude of variation in C. taylorii cell abundance attributable to each of several spatial (areas, sites, zones and replicates) and temporal scales (fortnights and years) in the Marine Protected Area of Tavolara Punta Coda Cavallo (Western Mediterranean Sea). The results indicate fortnight and year as the most relevant scales of variability in the cell abundance of C. taylorii and highlight the unimportance of small spatial scales (zone and replicates) to the species variability. The collected data also evidence the absence of a direct relationship between the cell density of C. taylorii and the production of mucilage. In conclusion, these results indicate that patterns in the cell abundance of C. taylorii vary notably depending on the considered scale and that future investigations on processes affecting its performance will need to consider the relevant scales of variation evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbate M, Bordone A, Cerrati G, Lisca A, Peirano A (2007) Variabilità della distribuzione e densità di Ostreopsis ovata nel Golfo della Spezia. Biol Mar Medit 14(2):286–287

    Google Scholar 

  • Abelson A, Denny M (1997) Settlement of Marine organisms in flow. Annu Rev Ecol Syst 28:317–339

    Article  Google Scholar 

  • Accoroni S, Colombo F, Pichierri S, Romagnoli T, Marini M, Battocchi C, Penna A, Totti C (2012a) Ecology of Ostreopsis cf. ovata blooms in the northwestern Adriatic Sea. Cryptogam Algol 33(2):191–198

    Article  Google Scholar 

  • Accoroni S, Romagnoli T, Pichierri S, Colombo F, Totti C (2012b) Morphometric analysis of Ostreopsis cf. ovata cells in relation to environmental conditions and bloom phases. Harmful Algae 19:15–22

    Article  Google Scholar 

  • Admiraal W (1984) The ecology of estuarine sediment-inhabiting diatoms. Prog Phycol Res 3:269–322

    Google Scholar 

  • Airoldi L (2000) Responses of algae with different life histories to temporal and spatial variability of disturbance in subtidal reefs. Mar Ecol Prog Ser 195:81–92

    Article  Google Scholar 

  • Aktan Y, Topaloğlu B (2011) First record of Chrysophaeum taylorii Lewis and Bryan and their benthic mucilaginous aggregates in the Aegean Sea (Eastern Mediterranean). J Black Sea/Mediterr Environ 17(2):159–170

    Google Scholar 

  • Andrew NL, Mapstone BD (1987) Sampling and the description of spatial pattern in marine ecology. Oceanogr Mar Biol Ann Rev 25:39–90

    Google Scholar 

  • Archambault P, Bourget E (1999) Influence of shoreline configuration on spatial variation of meroplanktonic larvae, recruitment and diversity of benthic subtidal communities. J Exp Mar Biol Ecol 238(2):161–184

    Article  Google Scholar 

  • Auinger BM, Pfandl K, Boenigk J (2008) Improved methodology for identification of protists and microalgae from plankton samples preserved in Lugol’s iodine solution: combining microscopic analysis with single-cell PCR. Appl Environ Microbiol 74(8):2505–2510

    Article  CAS  Google Scholar 

  • Azovsky AI (2000) Concept of scale in marine ecology: linking the words or the worlds? Web Ecol 1:28–34

    Article  Google Scholar 

  • Azovsky AI (2002) Size-dependent species area relationships in benthos, or whether this world is more diverse for microbes? Ecography 25:273–282

    Article  Google Scholar 

  • Azovsky AI, Chertoprood E, Saburova M, Polikarpov I (2004) Spatio-temporal variability of micro- and meiobenthic communities in a White Sea intertidal sandflat. Estuar Coast Shelf S 60:663–671

    Article  Google Scholar 

  • Benedetti-Cecchi L, Bertocci I, Micheli F, Maggi E, Fosella T, Vaselli S (2003) Implications of spatial heterogeneity for management of marine protected areas (MPAs): examples from assemblages of rocky coasts in the northwest Mediterranean. Mar Env Res 55:429–458

    Article  CAS  Google Scholar 

  • Bishop ID (2002) Determination of thresholds of visual impact: the case of wind turbines. Environ Plann B 29:707–718

    Article  Google Scholar 

  • Blasi F, Delaria M, Caronni S (2013) Prima segnalazione della microalga bentonica Chrysophaeum taylorii Lewis e Bryan lungo le coste laziali. Biol Mar Medit 20(1):120–121

    Google Scholar 

  • Botsford LW, Micheli F, Hastings A (2003) Principles for the design of marine reserves. Ecol Appl 13:S25–S31

    Article  Google Scholar 

  • Brito A, Newton A, Tett P, Fernandes TF (2009) Temporal and spatial variability of microphytobenthos in a shallow lagoon: ria Formosa (Portugal). Estuar Coast Shelf S 83:67–76

    Article  Google Scholar 

  • Burkovsky IV, Azovsky AI, Mokievsky VO (1994) Scaling in benthos: from microfauna to macrofauna. Arch Hydrobiol 99:517–535

    Google Scholar 

  • Cao Y, Williams DD, Larsen DP (2002) Comparison of ecological communities: the problem of sample representativeness. Ecol Monogr 72:41–56

    Article  Google Scholar 

  • Caronni S, Ceccherelli G, Navone A, Panzalis P, Pinna S, Sechi N (2011) I popolamenti bentonici nell’Area Marina Protetta Tavolara Punta Coda Cavallo (Sardegna nord-orientale) dopo una fioritura della microalga Chrysophaeum taylorii Lewis e Bryan. Studi Trentini di Scienze Naturali 89:107–110

    Google Scholar 

  • Chapman MG, Tolhurst TJ, Murphy RJ, Underwood AJ (2010) Complex and inconsistent patterns of variation in benthos, micro-algae and sediment over multiple spatial scales. Mar Ecol Prog Ser 398:33–47

    Article  CAS  Google Scholar 

  • Cochran WG (1977) Sampling techniques. Wiley, New York

    Google Scholar 

  • Cohu S, Thibaut T, Mangialajo L, Labat JP, Passafiume O, Blanfuné A, Simon N, Cottalorda JM, Lemée R (2011) Occurrence of the toxic dinoflagellate Ostreopsis cf. ovata in relation with environmental factors in Monaco (NW Mediterranean). Mar Poll Bull 62(12):2681–2691

    Article  CAS  Google Scholar 

  • Connell S (2005) Assembly and maintenance of subtidal habitat heterogeneity: synergistic effects of light penetration and sedimentation. Mar Ecol Prog Ser 289:53–61

    Article  Google Scholar 

  • Cullen JJ (2008) Observation and prediction of harmful algal blooms. In: Babin M, Roesler CS, Cullen JJ (eds) Real-time coastal observing systems for marine ecosystem dynamics and harmful algal blooms: theory. Instrumentation and Modelling, UESCO, Paris, pp 1–42

    Google Scholar 

  • Decho AW, Fleeger JW (1988) Microscale dispersion of meiobenthic copepods in response to food-resource patchiness. J Exp Mar Biol Ecol 118:229–243

    Article  Google Scholar 

  • Díaz ER, Kraufvelin P, Erlandsson J (2012) Combining gut fluorescence technique and spatial analysis to determine Littorina littorea grazing dynamics in nutrient-enriched and nutrient-unenriched littoral mesocosms. Mar Biol 159:837–852

    Article  Google Scholar 

  • Fowler-Walker MJ, Connell SD (2002) Opposing states of subtidal habitat across temperate Australia: consistency and predictability in kelp canopy-benthic associations. Mar Ecol Prog Ser 240:49–56

    Article  Google Scholar 

  • Fraschetti S, Terlizzi A, Benedetti-Cecchi L (2005) Patterns of distribution of marine assemblages from rocky shores: evidence of relevant scales of variation. Mar Ecol Prog Ser 296:13–29

    Article  Google Scholar 

  • Gerwick WH (1989) Desmethoxyhormothamnione, a new cytotoxic styrylchromone from the marine Cryptophyte Chrysophaeum taylorii. J Nat Prod 52(2):252–256

    Article  CAS  Google Scholar 

  • Granéli E, Vidyarathna NK, Funari E, Cumaranatunga PRT, Scenati R (2011) Can increases in temperature stimulate blooms of the toxic benthic dinoflagellate Ostreopsis ovata? Harmful Algae 10:165–172

    Article  Google Scholar 

  • Hewitt JE, Thrush SF, Cummings VJ, Turner SJ (1998) The effect of changing sampling scales on our ability to detect effects of large-scale processes on communities. J Exp Mar Biol Ecol 227:251–264

    Article  Google Scholar 

  • Hicks GRF (1986) Distribution and behaviour of meiofaunal copepods inside and outside seagrass beds. Mar Ecol Prog Ser 31:159–170

    Article  Google Scholar 

  • Horne JK, Schneider DC (1995) Spatial variance in ecology. Oikos 74:18–26

    Article  Google Scholar 

  • Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar Ecol Prog Ser 155:269–301

    Article  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54(2):187–211

    Article  Google Scholar 

  • Jackson AC, Underwood AJ, Murphy RJ, Skilleter GA (2010) Latitudinal and environmental patterns in abundance and composition of epilithic microphytobenthos. Mar Ecol Prog Ser 417:27–38

    Article  Google Scholar 

  • Jenkins SG, Partridge ST, Stephenson TR, Farley SD, Robbins CT (2001) Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring. Oecologia 129:336–341

    Google Scholar 

  • Kotliar NB, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260

    Article  Google Scholar 

  • Kraufvelin P, Perus J, Bonsdorff E (2011) Scale-dependent distribution of soft-bottom infauna and possible structuring forces in low diversity systems. Mar Ecol Prog Ser 426:13–28

    Article  Google Scholar 

  • Lawton JH (1996) Corncrake pie and prediction in ecology. Oikos 76:3–4

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the robert H MacArthur award lecture. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Lewis IF, Bryan HF (1941) A new protophyte from the dry tortugas. Am J Bot 28:343–348

    Article  Google Scholar 

  • Lobban CS, Tsuda RT (2003) Revised checklist of benthic marine macroalgae and seagrasses of Guam and Micronesia. Micronesia 35(36):54–99

    Google Scholar 

  • Lobban CS, Honda D, Chihara M, Schefter M (1995) Chrysocystis fragilis gen. nov., sp. nov. (Chrysophyceae, Sarcinochrysidales), with notes on other macroscopic Chrysophytes Golden algae) on Guam reefs. Micronesica 28:91–102

    Google Scholar 

  • Luglié A, Satta C, Padedda B, Pulina S, Sechi N (2008) What is Chrysophaeum taylorii Lewis & Bryan doing in Sardinia (Tyrrhenian Sea, Mediterranean)? Harmful Algae News 36:4–6

    Google Scholar 

  • MacIntyre HL, Cullen JJ (1995) Fine-scale vertical resolution of chlorophyll and photosynthetic parameters in shallow water benthos. Mar Ecol Prog Ser 122:227–237

    Article  CAS  Google Scholar 

  • MacIntyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the ‘Secret Garden’ of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19(2A):186–201

    Article  Google Scholar 

  • Méléder V, Rincé Y, Barillé L, Gaudin P, Rosa P (2007) Spatiotemporal changes in microphytobenthos assemblages in a macrotidal flat (Bourgneuf Bay, France). J Phycol 43:1177–1190

    Article  Google Scholar 

  • Michelet S, Caronni S, Ceccherelli G, Spano G, Sechi N (2010) Variabilità spazio-temporale della microalga Chrysophaeum taylorii Lewis e Bryan lungo le coste nord-orientali della Sardegna. Biol Mar Medit 18(1):264–265

    Google Scholar 

  • Moreno S, Niell FX (2004) Scales of variability in the sediment chlorophyll content of the shallow Palmones River Estuary, Spain. Estuar Coast Shelf S 60:49–57

    Article  CAS  Google Scholar 

  • Murphy RJ, Tolhurst TJ, Chapman MG, Underwood AJ (2008) Spatial variation of chlorophyll on estuarine mudflats determined by field-based remote sensing. Mar Ecol Prog Ser 365:45–55

    Article  CAS  Google Scholar 

  • Nicholas WL, Hodda M (1999) The free-living nematodes of a temperate, high energy, sandy beach: faunal composition and variation over space and time. Hydrobiologia 394:113–127

    Article  Google Scholar 

  • Nughes ML, Alvau M, Cappelletti C, Ciutti F, Floris B, Madeddu G, Monni V, Sau M (2005) Prima applicazione degli indici diatomici EPI-D ed IBD nel monitoraggio del Rio Picocca in provincia di Cagliari e confronto con l’IBE. Biologia Ambientale 19(1):233–235

    Google Scholar 

  • Peters L, Scheifhacken N, Kahlert M, Rothhaupt KO (2005) An efficient in situ method for sampling periphyton in lakes and streams. Arch Hydrobiol 163(1):133–141

    Article  Google Scholar 

  • Phlips EJ, Badylak S, Christman M, Wolny J, Brame J, Garland J, Hall JL, Hart J, Landsberg J, Lasi M, Lockwood J, Paperno R, Scheidt D, Staples A, Steidinger K (2011) Scales of temporal and spatial variability in the distribution of harmful algae species in the Indian River Lagoon, Florida, USA. Harmful Algae 10:277–290

    Article  Google Scholar 

  • Pinckney J, Sandulli R (1990) Spatial autocorrelation analysis of meiofaunal and microalgal populations on an intertidal sandflat: scale linkage between consumers and resources. Estuar Coast Shelf S 30:341–353

    Article  Google Scholar 

  • Reynolds SC (2007) Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578:37–45

    Article  Google Scholar 

  • Saburova MA, Polikarpov IG, Burkovsky IV (1995) Spatial structure of an intertidal sandflat microphytobenthic community as related to different spatial scales. Mar Ecol Prog Ser 129:229–239

    Article  Google Scholar 

  • Safi KA (2003) Microalgal populations of three New Zealand coastal locations: forcing functions and benthic–pelagic links. Mar Ecol Prog Ser 259:67–78

    Article  Google Scholar 

  • Saravia LA, Giorgi A, Momo F (2012) Multifractal spatial patterns and diversity in an ecological succession. PLoS One 7(3):1–8

    Google Scholar 

  • Schaffelke B, Smith JE, Hewitt CL (2006) Introduced macroalgae—a growing concern. J App Phyco 18:529–541

    Article  Google Scholar 

  • Sebens KP (1986) Spatial relationships among encrusting marine organisms in the New England subtidal zone. Ecol Monogr 56:73–96

    Article  Google Scholar 

  • Serodio J, Marques da Silva J, Catarino F (1997) Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J Phycol 33:542–553

    Article  CAS  Google Scholar 

  • Seuront L, Spilmont N (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Physics A 313:513–539

    Article  CAS  Google Scholar 

  • Spilmont N, Seuront L, Meziane T, Welsh DT (2011) There’s more to the picture than meets the eye: sampling microphytobenthos in a heterogeneous environment. Estuar Coast Shelf S 95:470–476

    Article  CAS  Google Scholar 

  • Taylor WR (1960) Marine algae of the eastern tropical and subtropical coasts of the Americas. University of Michigan Press, Toronto

    Google Scholar 

  • Taylor WR (1969) Notes on the distribution of West Indian marine algae particularly in the Lesser Antilles. Mich Univ Herb Contrib 9:125–203

    Google Scholar 

  • Totti C, Accoroni S, Cerino F, Cucchiari E, Romagnoli T (2010) Ostreopsis ovata bloom along the Conero Riviera (northern Adriatic Sea): relationships with environmental conditions and substrata. Harmful Algae 9:233–239

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology. Their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Underwood AJ, Chapman MG (1996) Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia 107(2):212–224

    Article  Google Scholar 

  • Underwood AJ, Petraitis PS (1993) Structure of intertidal assemblages in different locations: how can local processes be compared? In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, pp 38–51

    Google Scholar 

  • Underwood AJ, Chapman MG, Connell SD (2000) Observations in ecology: you can’t make progress on processes without understanding the patterns. J Exp Mar Biol Ecol 250:97–115

    Article  Google Scholar 

  • Wootton JT (2001) Prediction in complex communities: analysis of empirically derived Markov models. Ecology 82(2):580–598

    Article  Google Scholar 

  • Zingone A, Honsell G, Marino D, Montresor M, Socal G (1990) Metodi nell’Ecologia del Plancton Marino: fitoplancton. Nova Thalassia 11:184–187

    Google Scholar 

Download references

Acknowledgments

We are sincerely thankful to Patrik Kraufvelin and to the two anonymous reviewers for improving the manuscript. We are also grateful to Luisa Polastro for the English revision. We thank Salvatore Vitale (MPA), Giovanni Macri and all the students training in the MPA over the study period for the help during the field activities This work was supported by the Tavolara Punta Coda Cavallo MPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Caronni.

Additional information

Communicated by P. Kraufvelin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caronni, S., Delaria, M.A., Navone, A. et al. Relevant scales of variability of the benthic allochthonous microalga Chrysophaeum taylorii . Mar Biol 161, 1787–1798 (2014). https://doi.org/10.1007/s00227-014-2461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2461-3

Keywords

Navigation