Skip to main content
Log in

Atypical plant–herbivore association of algal food and a kleptoplastic sea slug (Elysia clarki) revealed by DNA barcoding and field surveys

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The identity of food sources and feeding preferences of specialist herbivores have been commonly inferred from spatial associations between consumer and food items. However, such basic information for well-known marine herbivores, sacoglossans (sea slugs), and their algal diets remains disappointingly lacking, especially from field studies. The sacoglossan, Elysia clarki (Pierce et al. in Molluscan Res 26:23–38, 2006), is kleptoplastic and sequesters chloroplasts from algal food to photosynthesize, so DNA identification of sequestered chloroplasts was employed to verify the algal species fed upon by the slug across its geographic range. The molecular information on the algae consumed by E. clarki was combined with field surveys of slugs and algae in slug habitats in the Florida Keys in July and August of 2008 in order to evaluate whether the diet of this herbivore could be predicted based on its spatial association with algae in the field. A considerable mismatch between food availability and kleptoplast identity was recorded. E. clarki commonly occupied areas devoid of potential food and often contained symbiotic plastids from algal species different from those most frequently found in the surveyed habitats. In three of the four study sites, algal species present were poor predictors of slug diet. These findings suggest that the photosynthetic capability of E. clarki may release the slug from the constraint of requiring proximity to its food sources and may allow for the potential lack of spatial coupling between this herbivore and its algal food. This combination of field surveys and DNA barcoding provided critical and previously unavailable information on herbivore feeding in this marine system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bell TM, Sotka EE (2012) Local adaptation in adult feeding preference and juvenile performance in the generalist herbivore Idotea balthica. Oecologia 170:383–393. doi:10.1007/s00442-012-2302-3

    Article  Google Scholar 

  • Bernays EA, Funk DJ (1999) Specialists make faster decisions than generalists: experiments with aphids. Proc R Soc B-Biol Sci 266:151–156

    Article  Google Scholar 

  • Blankenship LE, Yayanos AA (2005) Universal primers and PCR of gut contents to study marine invertebrate diets. Mol Ecol 14:891–899. doi:10.1111/j.1365-294X.2005.02448.x

    Article  CAS  Google Scholar 

  • Bohmann K, Monadjem A, Noer CL, Rasmussen M, Zeale MRK, Clare E, Jones G, Willerslev E, Gilbert MTP (2011) Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. PLoS One 6(6):e21441. doi:10.1371/journal.pone.0021441

    Article  CAS  Google Scholar 

  • Bourlat SJ, Nakano H, Akerman M, Telford MJ, Thorndyke MC, Obst M (2008) Feeding ecology of Xenoturbella bocki (Phylum Xenoturbellida) revealed by genetic barcoding. Mol Ecol Resour 8:18–22. doi:10.1111/j.1471-8286.2007.01959.x

    Article  CAS  Google Scholar 

  • Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoa. In: Carlson CA, Giovannoni SJ (eds) Annu Rev Mar Sci, Vol 3. Annual Reviews, Palo Alto, pp 471–508

  • Christa G, Wescott L, Schaberle TF, Konig GM, Wagele H (2013) What remains after 2 months of starvation? Analysis of sequestered algae in a photosynthetic slug, Plakobranchus ocellatus (Sacoglossa, Opisthobranchia), by barcoding. Planta 237:559–572. doi:10.1007/s00425-012-1788-6

    Article  CAS  Google Scholar 

  • Clark KB (1994) Ascoglossan (=sacoglossa) mollusks in the Florida Keys: rare marine invertebrates at special risk. Bull Mar Sci 54:900–916

    Google Scholar 

  • Clark KB, Jensen KR, Stirts HM (1990) Survery for functional kleptoplasty among West Atlantic ascoglossa (=sacoglossa) (Mollusca Opisthobranchia). Veliger 33:339–345

    Google Scholar 

  • Curtis NE, Massey SE, Pierce SK (2006) The symbiotic chloroplasts in the sacoglossan Elysia clarki are from several algal species. Invert Biol 125:336–345. doi:10.1111/j.1744-7410.2006.00065.x

    Article  Google Scholar 

  • Curtis NE, Pierce SK, Massey SE, Schwartz JA, Maugel TK (2007) Newly metamorphosed Elysia clarki juveniles feed on and sequester chloroplasts from algal species different from those utilized by adult slugs. Mar Biol 150:797–806. doi:10.1007/s00227-006-0398-x

    Article  Google Scholar 

  • Curtis NE, Dawes CJ, Pierce SK (2008) Phylogenetic analysis of the large subunit Rubisco gene supports the exclusion of Avrainvillea and Cladocephalus from the Udoteaceae (Bryopsidales, Chlorophyta). J Phycol 44:761–767. doi:10.1111/j.1529-8817.2008.00519.x

    Article  Google Scholar 

  • Curtis NE, Schwartz JA, Pierce SK (2010) Ultrastructure of sequestered chloroplasts in sacoglossan gastropods with differing abilities for plastid uptake and maintenance. Invert Biol 129:297–308. doi:10.1111/j.1744-7410.2010.00206.x

    Article  Google Scholar 

  • Duffy JE, Hay ME (1994) Herbivore resistance to seaweed chemical defense—the roles of mobility and predation risk. Ecology 75:1304–1319. doi:10.2307/1937456

    Article  Google Scholar 

  • Egan SP, Funk DJ (2006) Individual advantages to ecological specialization: insights on cognitive constraints from three conspecific taxa. Proc R Soc B-Biol Sci 273:843–848. doi:10.1098/rspb.2005.3382

    Article  Google Scholar 

  • Evertsen J, Johnsen G (2009) In vivo and in vitro differences in chloroplast functionality in the two north Atlantic sacoglossans (Gastropoda, Opisthobranchia) Placida dendritica and Elysia viridis. Mar Biol 156:847–859. doi:10.1007/s00227-009-1128-y

    Article  CAS  Google Scholar 

  • Gallop A, Bartrop J, Smith D (1980) The biology of chloroplasts acquisition by Elysia viridis. Proc R Soc Lond (B) 207:335–349

    Article  CAS  Google Scholar 

  • Garcia-Robledo C, Erickson DL, Staines CL, Erwin TL, Kress WJ (2013) Tropical plant-herbivore networks: reconstructing species interactions using DNA barcodes. PLoS One 8(1):e52967. doi:10.1371/journal.pone.0052967

    Article  CAS  Google Scholar 

  • Gimènez-Casalduero F, Muniain C (2008) The role of kleptoplasts in the survival rates of Elysia timida (Risso, 1818): (Sacoglossa : Opisthobranchia) during periods of food shortage. J Exp Mar Biol Ecol 357:181–187. doi:10.1016/j.jembe.2008.01.020

    Article  Google Scholar 

  • Händeler K, Wägele H (2007) Preliminary study on molecular phylogeny of Sacoglossa and a compilation of their food organisms. Bonn Zool Beitr 55:231–254

    Google Scholar 

  • Händeler K, Wägele H, Wahrmund U, Rudinger M, Knoop V (2010) Slugs’ last meals: molecular identification of sequestered chloroplasts from different algal origins in Sacoglossa (Opisthobranchia, Gastropoda). Mol Ecol Resour 10:968–978. doi:10.1111/j.1755-0998.2010.02853.x

    Article  Google Scholar 

  • Hay ME, Duffy JE, Paul VJ, Renaud PE, Fenical W (1990) Specialist herbivores reduce their susceptibility to predation by feeding on the chemically defended seaweed Avrainvillea longicaulis. Limnol Oceanogr 35:1734–1743

    Article  Google Scholar 

  • Jensen KR (1980) A review of sacoglossan diets with comparative notes on radular and buccal anatomy. Malacol Rev 13:55–78

    Google Scholar 

  • Jensen KR (1994) Behavioral adaptations and diet specificity of sacoglossan opisthobranchs. Ethol Ecol Evol 6:87–101

    Article  Google Scholar 

  • Jurado-Rivera JA, Vogler AP, Reid CAM, Petitpierre E, Gomez-Zurita J (2009) DNA barcoding insect-host plant associations. Proc R Soc B 276:639–648. doi:10.1098/rspb.2008.1264

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Maeda T, Hirose E, Chikaraishi Y, Kawato M, Takishita K, Yoshida T, Verbruggen H, Tanaka J, Shimamura S, Takaki Y, Tsuchiya M, Iwai K, Maruyama T (2012) Algivore or Phototroph? Plakobranchus ocellatus (Gastropoda) continuously acquires kleptoplasts and nutrition from multiple algal species in nature. PLoS One 7(7):e42024. doi:10.1371/journal.pone.0042024

    Article  CAS  Google Scholar 

  • Marques LV, Villaca R, Pereira RC (2006) Susceptibility of macroalgae to herbivorous fishes at Rocas Atoll, Brazil. Bot Mar 49:379–385. doi:10.1515/bot.2006.049

    Google Scholar 

  • Middlebrooks ML, Pierce SK, Bell SS (2011) Foraging behavior under starvation conditions is altered via photosynthesis by the marine gastropod, Elysia clarki. PLoS One 6(7):e22162. doi:10.1371/journal.pone.0022162

    Article  CAS  Google Scholar 

  • Middlebrooks ML, Bell SS, Pierce SK (2012) The kleptoplastic sea slug Elysia clarki prolongs photosynthesis by synthesizing chlorophyll a and b. Symbiosis 57:127–132

    Article  CAS  Google Scholar 

  • Miller MA, Muller GC, Kravchenko VD, Junnila A, Vernon KK, Matheson CD, Hausmann A (2006) DNA-based identification of Lepidoptera larvae and plant meals from their gut contents. Russ Entomol J 15:427–432

    Google Scholar 

  • Pearre SJ (1982) Estimating prey preference by predators: uses of various indices, and proposal of another based on χ2. Can J Fish Aqua Sci 39:914–923

    Article  Google Scholar 

  • Pennings SC, Paul VJ (1993) Secondary chemistry does not limit dietary range of the specialist sea hare Stylocheilus-longicauda (Quoy-et-Gaimard 1824). J Exp Mar Biol Ecol 174:97–113. doi:10.1016/0022-0981(93)90253-k

    Article  Google Scholar 

  • Pennings SC, Nadeau MT, Paul VJ (1993) Selectivity and growth of the generalist herbivore Dolabella auricularia feeding upon complementary resources. Ecology 74:879–890. doi:10.2307/1940813

    Article  Google Scholar 

  • Pierce SK, Curtis NE (2012) Cell biology of the chloroplast symbiosis in sacoglossan sea slugs. Int Rev Cell Mol Biol 293:123–148

    Article  CAS  Google Scholar 

  • Pierce SK, Curtis NE, Massey SE, Bass AL, Karl SA, Finney CM (2006) A morphological and molecular comparison between Elysia crispata and a new species of kleptoplastic sacoglossan sea slug (Gastropoda: Opisthobranchia) from the Florida Keys, USA. Molluscan Res 26:23–38

    CAS  Google Scholar 

  • Pierce SK, Curtis NE, Schwartz JA (2009) Chlorophyll a synthesis by an animal using transferred algal nuclear genes. Symbiosis 49:121–131. doi:10.1007/s13199-009-0044-8

    Article  CAS  Google Scholar 

  • Poore AGB, Hill NA, Sotka EE (2008) Phylogenetic and geographic variation in host breadth and composition by herbivorous amphipods in the family ampithoidae. Evolution 62:21–38. doi:10.1111/j.1558-5646.2007.00261.x

    Google Scholar 

  • Raye G, Miquel C, Coissac E, Redjadj C, Loison A, Taberlet P (2011) New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing: chamois diet in autumn as a case study. Ecol Res 26:265–276. doi:10.1007/s11284-010-0780-5

    Article  Google Scholar 

  • Rogers CN, De Nys R, Steinberg PD (2000) Predation on juvenile Aplysia parvula and other small anaspidean, ascoglossan, and nudibranch gastropods by pycnogonids. Veliger 43:330–337

    Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats—fauna of collards (Brassica oleracea). Ecol Monogr 43:95–120. doi:10.2307/1942161

    Article  Google Scholar 

  • Sheppard SK, Harwood JD (2005) Advances in molecular ecology: tracking trophic links through predator-prey food-webs. Funct Ecol 19:751–762. doi:10.1111/j.1365-2435.2005.01041.x

    Article  Google Scholar 

  • Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol Skr 5:1–34

    Google Scholar 

  • Sotka EE (2005) Local adaptation in host use among marine invertebrates. Ecol Lett 8:448–459. doi:10.1111/j.1461-0248.2004.00719.x

    Article  Google Scholar 

  • Sotka EE (2007) Restricted host use by the herbivorous amphipod Peramphithoe tea is motivated by food quality and abiotic refuge. Mar Biol 151:1831–1838. doi:10.1007/s00227-007-0612-5

    Article  Google Scholar 

  • Sotka EE, Hay ME, Thomas JD (1999) Host-plant specialization by a non-herbivorous amphipod: advantages for the amphipod and costs for the seaweed. Oecologia 118:471–482. doi:10.1007/s004420050750

    Article  Google Scholar 

  • Steneck RS, Hacker SD, Dethier MN (1991) Mechanisms of competitive dominance between crustose coralline algae—an herbivore-mediated competitive reversal. Ecology 72:938–950. doi:10.2307/1940595

    Article  Google Scholar 

  • Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641. doi:10.1046/j.1365-294X.2002.01471.x

    Article  CAS  Google Scholar 

  • Tahvanai JO, Root RB (1972) Influence of vegetational diversity on population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera: chrysomelidae). Oecologia 10:321–346. doi:10.1007/bf00345736

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Tollit DJ, Schulze AD, Trites AW, Olesiuk PF, Crockford SJ, Gelatt TS, Ream RR, Miller KM (2009) Development and application of DNA techniques for validating and improving pinniped diet estimates. Ecol Appl 19:889–905. doi:10.1890/07-1701.1

    Article  Google Scholar 

  • Tosh CR, Krause J, Ruxton GD (2009) Theoretical predictions strongly support decision accuracy as a major driver of ecological specialization. Proc Natl Acad Sci USA 106:5698–5702. doi:10.1073/pnas.0807247106

    Article  CAS  Google Scholar 

  • Trench RK, Ohlhorst S (1976) Stability of chloroplasts from siphonaceous algae in symbiosis with sacoglossan mollusks. New Phytol 76:99–109

    Article  CAS  Google Scholar 

  • Trench RK, Greene RW, Bystrom BG (1969) Chloroplasts as functional organelles in animal tissues. J Cell Biol 42:404–417

    Article  CAS  Google Scholar 

  • Trowbridge CD (1991) Diet specialization limits herbivorous sea slugs capacity to switch among food species. Ecology 72:1880–1888

    Article  Google Scholar 

  • Trowbridge CD (1992) Mesoherbivory: the ascoglossan sea slug Placida dendritica may contribute to the restricted distribution of its algal host. Mar Ecol Prog Ser 83:207–220

    Article  Google Scholar 

  • Trowbridge CD (1998) Stenophagous, herbivorous sea slugs attack desiccation-prone, green algal hosts (Codium spp.): indirect evidence of prey-stress models (PSMs)? J Exp Mar Biol Ecol 230:31–53

    Article  Google Scholar 

  • Trowbridge CD (2002) Local elimination of Codium fragile ssp. tomentosoides: indirect evidence of sacoglossan herbivory? J Mar Biol Assoc UK 82:1029–1030

    Article  Google Scholar 

  • Trowbridge CD (2004) Emerging associations on marine rocky shores: specialist herbivores on introduced macroalgae. J Anim Ecol 73:294–308

    Article  Google Scholar 

  • Trowbridge CD, Todd CD (2001) Host-plant change in marine specialist herbivores: ascoglossan sea slugs on introduced macroalgae. Ecol Monogr 71:219–243

    Article  Google Scholar 

  • Warner RR (1997) Evolutionary ecology: how to reconcile pelagic dispersal with local adaptation. Coral Reef 16:S115–S120. doi:10.1007/s003380050247

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by a Lerner Gray Fellowship and a Tharp Graduate Award, USF, to MLM, and a private donor, to SKP, who wishes to remain anonymous. Specimens were collected under permit SAL-11-0616-SR issued to SKP by the State of Florida Fish and Wildlife Conservation Commission. We thank Julie Schwartz for logistical assistance and Peter Stiling and Margaret Hall for comments on a previous version of the manuscript. We also thank the Keys Marine Lab for logistical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Middlebrooks.

Additional information

Communicated by J. Grassle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1096 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middlebrooks, M.L., Bell, S.S., Curtis, N.E. et al. Atypical plant–herbivore association of algal food and a kleptoplastic sea slug (Elysia clarki) revealed by DNA barcoding and field surveys. Mar Biol 161, 1429–1440 (2014). https://doi.org/10.1007/s00227-014-2431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2431-9

Keywords

Navigation