Skip to main content
Log in

Patterns of co-occurrence and interactions between age classes of the common triplefin, Forsterygion lapillum

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Many marine organisms have pelagic larval stages that settle into benthic habitats occupied by older individuals; however, a mechanistic understanding of intercohort interactions remains elusive for most species. Patterns of spatial covariation in the densities of juvenile and adult age classes of a small temperate reef fish, the common triplefin (Forsterygion lapillum), were evaluated during the recruitment season (Feb–Mar, 2011) in Wellington, New Zealand (41°17′S, 174°46′E). The relationship between juvenile and adult density among sites was best approximated by a dome-shaped curve, with a negative correlation between densities of juveniles and adults at higher adult densities. The curve shape was temporally variable, but was unaffected by settlement habitat type (algal species). A laboratory experiment using a “multiple-predator effects” design tested the hypothesis that increased settler mortality in the presence of adults (via enhanced predation risk or cannibalism) contributed to the observed negative relationship between juveniles and adults. Settler mortality did not differ between controls and treatments that contained either one (p = 0.08) or two (p = 0.09) adults. However, post hoc analyses revealed a significant positive correlation between the mean length of juveniles used in experimental trials and survival of juveniles in these treatments, suggesting that smaller juveniles may be vulnerable to cannibalism. There was no evidence for risk enhancement or predator interference when adults were present alongside a heterospecific predator (F. varium). These results highlight the complex nature of intercohort relationships in shaping recruitment patterns and add to the growing body of literature recognizing the importance of age class interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam TC (2011) High-quality habitat and facilitation ameliorate competitive effects of prior residents on new settlers. Oecologia 166:121–130. doi:10.1007/s00442-010-1826-7

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. Autom Control IEEE Trans 19:716–723

    Article  Google Scholar 

  • Almany GR, Webster MS (2006) The predation gauntlet: early post-settlement mortality in reef fishes. Coral Reefs 25:19–22. doi:10.1007/s00338-005-0044-y

    Article  Google Scholar 

  • Ammann AJ (2004) SMURFs: standard monitoring units for the recruitment of temperate reef fishes. J Exp Mar Bio Ecol 299:135–154

    Article  Google Scholar 

  • Anderson MJ, Millar RB (2004) Spatial variation and effects of habitat on temperate reef fish assemblages in northeastern New Zealand. J Exp Mar Bio Ecol 305:191–221. doi:10.1016/j.jembe.2003.12.011

    Article  Google Scholar 

  • Ayllón D, Nicola GG, Parra I et al (2013) Intercohort density dependence drives brown trout habitat selection. Acta Oecol 46:1–9. doi:10.1016/j.actao.2012.10.007

    Article  Google Scholar 

  • Bailey KM, Houde ED (1989) Predation on eggs and larvae of marine fishes and the recruitment problem. Adv Mar Biol 25:1–83. doi:10.1016/S0065-2881(08)60187-X

    Article  Google Scholar 

  • Barton L (2013). MuMIn: multi-model inference. R package version 1.9.5. http://CRAN.R-project.org/package=MuMIn

  • Bates D, Maechler M, Bolker B, Walker S (2013). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-4. http://CRAN.R-project.org/package=lme4

  • Beukers JS, Jones GP (1998) Habitat complexity modifies the impact of piscivores on a coral reef fish population. Oecologia 114:50–59. doi:10.1007/s004420050419

    Article  Google Scholar 

  • Bjørnstad O, Fromentin J, Stenseth N, Gjøsaeter J (1999) Cycles and trends in cod populations. Proc Natl Acad Sci U S A 96:5066–5071. doi:10.1073/pnas.96.9.5066

    Article  Google Scholar 

  • Bjørnstad O, Nisbet RM, Fromentin JM (2004) Trends and cohort resonant effects in age structured populations. J Anim Ecol 73:1157–1167. doi:10.1111/j.0021-8790.2004.00888.x

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  Google Scholar 

  • Booth JD (1975) Seasonal and tidal variations in the hydrology of Wellington harbour. N Z J Mar Freshw Res 9:333–354. doi:10.1080/00288330.1975.9515572

    Article  Google Scholar 

  • Borgstem R, Heggenes J, Nothcote TG (1993) Regular, cyclic oscillations in cohort strength in an allopatric population of brown trout Salmo trutta L. Ecol Freshw Fish 2:8–15. doi:10.1111/j.1600-0633.1993.tb00011.x

    Article  Google Scholar 

  • Bowman M, Kibblewhite A, Murtagh RA et al (1983) Circulation and mixing in greater Cook Strait, New Zealand. Oceanol Acta 6:383–391

    CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York

  • Caley M, Carr M, Hixon M et al (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27:477–500. doi:10.1146/annurev.ecolsys.27.1.477

    Article  Google Scholar 

  • Carr MH (1994) Effects of macroalgal dynamics on recruitment of a temperate reef fish. Ecology 75:1320. doi:10.2307/1937457

    Article  Google Scholar 

  • Clements KD (2003) Triplefins. In: Andrew N, Francis M (eds) The living reef: the ecology of New Zealand’s rocky reefs. Craig Potton Publishing, Nelson, pp 160–167

    Google Scholar 

  • Connell S, Jones G (1991) The influence of habitat complexity on postrecruitment processes in a temperate reef fish population. J Exp Mar Bio Ecol 151:271–294. doi:10.1016/0022-0981(91)90129-K

    Article  Google Scholar 

  • Feary DA, Clements KD (2006) Habitat use by triplefin species (Tripterygiidae) on rocky reefs in New Zealand. J Fish Biol 69:1031–1046. doi:10.1111/j.1095-8649.2006.01178.x

    Article  Google Scholar 

  • Feary DA, Wellenreuther M, Clements KD (2009) Trophic ecology of New Zealand triplefin fishes (Family Tripterygiidae). Mar Biol 156:1703–1714. doi:10.1007/s00227-009-1205-2

    Article  Google Scholar 

  • Forrester GE (1995) Strong density-dependent survival and recruitment regulate the abundance of a coral reef fish. Oecologia 103:275–282. doi:10.1007/BF00328615

    Article  Google Scholar 

  • Forrester GE (1999) The influence of adult density an larval settlement in a coral reef fish, Coryphopterus glaucofraenum. Coral Reefs 18:85–89. doi:10.1007/s003380050159

    Article  Google Scholar 

  • Forrester GE, Evans B, Steele MA, Vance RR (2006) Assessing the magnitude of intra-and interspecific competition in two coral reef fishes. Oecologia 148:632–640. doi:10.1007/s00442-006-0397-0

    Article  Google Scholar 

  • Foster S, Garcia V, Town M (1988) Cannibalism as the cause of an ontogenetic shift in habitat use by fry of the threespine stickleback. Oecologia 577–585. doi: 10.1007/BF00380056

  • Geange SW, Stier AC (2009) Order of arrival affects competition in two reef fishes. Ecology 90:2868–2878. doi:10.1890/08-0630.1

    Article  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Griffen BD (2006) Detecting emergent effects of multiple predator species. Oecologia 148:702–709. doi:10.1007/s00442-006-0414-3

    Article  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711. doi:10.1111/j.1420-9101.2010.02210.x

    Article  CAS  Google Scholar 

  • Hayes J, Weikel J, Huso M (2003) Response of birds to thinning young Douglas-fir forests. Ecol Appl 13:1222–1232. doi:10.1890/02-5068

    Article  Google Scholar 

  • Heath R (1985) A review of the physical oceanography of the seas around New Zealand—1982. N Z J Mar Freshw Res 19:79–124. doi:10.1080/00288330.1985.9516077

    Article  Google Scholar 

  • Helson JG, Pledger S, Gardner JPA (2007) Does differential particulate food supply explain the presence of mussels in Wellington Harbour (New Zealand) and their absence on neighbouring Cook Strait shores? Estuar Coast Shelf Sci 72:223–234. doi:10.1016/j.ecss.2006.10.015

    Article  Google Scholar 

  • Hirschberg JG, Lye JN (2005) Inferences for the extremum of quadratic regression models. University of Melbourne, Department of Economics, Research Paper Number 906, Melbourne, Victoria, Australia

  • Hixon MA (2011) 60 Years of coral reef fish ecology: past, present, future. Bull Mar Sci 87:727–765. doi:10.5343/bms.2010.1055

    Article  Google Scholar 

  • Hixon M, Jones G (2005) Competition, predation, and density-dependent mortality in demersal marine fishes. Ecology 86:2847–2859. doi:10.1890/04-1455

    Article  Google Scholar 

  • Hixon M, Anderson T, Buch KL et al (2012) Density dependence and population regulation in marine fish: a large-scale, long-term field manipulation. Ecol Monogr 82:467–489. doi:10.1890/11-1525.1

    Article  Google Scholar 

  • Holbrook S, Schmitt R (2002) Competition for shelter space causes density-dependent predation mortality in damselfishes. Ecology 83:2855–2868

    Article  Google Scholar 

  • Holbrook S, Carr M, Schmitt RJ, Coyer JA (1990) Effect of giant kelp on local abundance of reef fishes: the importance of ontogenetic resource requirements. Bull Mar Sci 47:104–114

    Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous Inference in general parametric models. Biom J 50:346–363

    Article  Google Scholar 

  • Hunt T, Ford J, Swearer S (2011) Ecological determinants of recruitment to populations of a temperate reef fish, Trachinops caudimaculatus (Plesiopidae). Mar Freshw Res 62:502–509. doi:10.1071/MF10262

    Article  Google Scholar 

  • Johnson DW (2007) Habitat complexity modifies post-settlement mortality and recruitment dynamics of a marine fish. Ecology 88:1716–1725. doi:10.1890/06-0591.1

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108. doi:10.1016/j.tree.2003.10.013

    Article  Google Scholar 

  • Jones GP (1984) Population ecology of the temperate reef fish Pseudolabrus celidotus Bloch & Schneider (Pisces: Labridae). II. Factors influencing adult density. J Exp Mar Bio Ecol 15:277–303. doi:10.1016/0022-0981(84)90170-9

    Article  Google Scholar 

  • Jones GP, McCormick MI (2006) Numeric and Energetic Processes in the Ecology of Coral Reef Fishes. In: Sale P (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Elsevier Publishing, London, pp 221–238

    Google Scholar 

  • Kohn YY, Clements KD (2011) Pelagic larval duration and population connectivity in New Zealand triplefin fishes (Tripterygiidae). Environ Biol Fish 91:275–286. doi:10.1007/s10641-011-9777-3

    Article  Google Scholar 

  • Levin PS (1991) Effects of microhabitat on recruitment variation in a gulf of marine reef fish. Mar Ecol Prog Ser 75:183–189

    Article  Google Scholar 

  • McDermott CJ, Shima JS (2006) Ontogenetic shifts in microhabitat preference of the temperate reef fish Forsterygion lapillum: implications for population limitation. Mar Ecol Prog Ser 320:259–266. doi:10.3354/meps320259

    Article  Google Scholar 

  • Mitchell MD, McCormick MI, Ferrari MCO, Chivers DP (2011) Coral reef fish rapidly learn to identify multiple unknown predators upon recruitment to the reef. PLoS ONE 6(6):e15764. doi:10.1371/journal.pone.0015764

    Article  CAS  Google Scholar 

  • Morton DN, Shima JS (2013) Habitat configuration and availability influences the settlement of temperate reef fishes (Tripterygiidae). J Exp Mar Bio Ecol 449:215–220. doi:10.1016/j.jembe.2013.09.017

    Article  Google Scholar 

  • Pedraza-Garcia M, Cubillos LA (2008) Population dynamics of two small pelagic fish in the central-south area off Chile: delayed density-dependence and biological interaction. Environ Biol Fishes 82:111–122. doi:10.1007/s10641-007-9260-3

    Article  Google Scholar 

  • Pérez-Matus A, Shima JS (2010) Disentangling the effects of macroalgae on the abundance of temperate reef fishes. J Exp Mar Bio Ecol 388:1–10. doi:10.1016/j.jembe.2010.03.013

    Article  Google Scholar 

  • Persson L, Byström P, Wahlström E (2000) Cannibalism and competition in Eurasian perch: population dynamics of an ontogenetic omnivore. Ecology 81:1058–1071. doi:10.1890/0012-9658(2000)081[1058:CACIEP]2.0.CO;2

    Article  Google Scholar 

  • Polis G, Myers C, Holt R (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330. doi: http://www.jstor.org/stable/2097094

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Richards SA (2008) Dealing with overdispersed count data in applied ecology. J Appl Ecol 45:218–227. doi:10.1111/j.1365-2664.2007.01377.x

    Article  Google Scholar 

  • Robertson D, Green D, Victor B (1988) Temporal coupling of production and recruitment of larvae of a Caribbean reef fish. Ecology 69:370–381

    Article  Google Scholar 

  • Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241:1460–1466. doi:10.1126/science.11538249

    Article  CAS  Google Scholar 

  • Samhouri JF, Steele MA, Forrester GE (2009) Inter-cohort competition drives density dependence and selective mortality in a marine fish. Ecology 90:1009–1020. doi:10.1890/07-1161.1

    Article  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. doi:10.1111/j.2041-210X.2010.00012.x

    Article  Google Scholar 

  • Schmitt RJ, Holbrook SJ (1999) Mortality of juvenile damselfish: implications for assessing processes that determine abundance. Ecology 80:35–50. doi:10.1890/0012-9658(1999)080[0035:MOJDIF]2.0.CO;2

    Article  Google Scholar 

  • Schmitt R, Holbrook S, Brooks A, Lape J (2009) Intraguild predation in a structured habitat: distinguishing multiple-predator effects from competitor effects. Ecology 90:2434–2443. doi:10.1890/08-1225.1

    Article  Google Scholar 

  • Shima JS, Osenberg CW (2003) Cryptic density dependence: effects of covariation between density and site quality in reef fish. Ecology 84:46–52

    Article  Google Scholar 

  • Shima JS, Swearer SE (2009a) Larval quality is shaped by matrix effects: implications for connectivity in a marine metapopulation. Ecology 90:1255–1267

    Article  Google Scholar 

  • Shima JS, Swearer SE (2009b) Spatially variable larval histories may shape recruitment rates of a temperate reef fish. Mar Ecol Prog Ser 394:223–229. doi:10.3354/meps08298

    Article  Google Scholar 

  • Shima JS, McNaughtan D, Geange SW, Wilkinson S (2012) Ontogenetic variation in site fidelity and homing behaviour of a temperate reef fish. J Exp Mar Bio Ecol 416–417:162–167. doi:10.1016/j.jembe.2012.02.020

    Article  Google Scholar 

  • Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:350–355. doi:10.1016/s0169-5347(98)01437-2

    Article  CAS  Google Scholar 

  • Smith AC (2010) Environmental and life-history factors influencing juvenile demography of a temperate reef fish. PhD Dissertation, Victoria University of Wellington

  • Smith C, Reay P (1991) Cannibalism in teleost fish. Rev Fish Biol Fish 64:41–64

    Article  Google Scholar 

  • Smith AC, Shima JS (2011) Variation in the effects of larval history on juvenile performance of a temperate reef fish. Austral Ecol 36:830–838. doi:10.1111/j.1442-9993.2010.02223.x

    Article  Google Scholar 

  • Stamps J, Krishnan V (2005) Nonintuitive cue use in habitat selection. Ecology 2860–2867. doi:10.1890/05-0290

  • Swearer SE, Shima JS (2009) Regional variation in larval retention and dispersal drives recruitment patterns in a temperate reef fish. Mar Ecol Prog Ser 417:229–236. doi:10.3354/meps08801

    Article  Google Scholar 

  • Sweatman HPA (1988) Field evidence that settling coral reef fish larvae detect resident fishes using dissolved chemical cues. J Exp Mar Bio Ecol 124:163–174. doi:10.1016/0022-0981(88)90170-0

    Article  Google Scholar 

  • Sweatman HPA, St John J (1990) Effects of selective settlement and of aggression by residents on distribution of young recruits of 2 tropical damselfishes. Mar Biol 105:247–252. doi:10.1007/bf01344293

    Article  Google Scholar 

  • Syms C (1995) Multi-scale analysis of habitat association in a guild of blennioid fishes. Mar Ecol Prog Ser 125:31–43

    Article  Google Scholar 

  • Tupper M, Boutilier RG (1995) Effects of conspecific density on settlement, growth and post-settlement survival of a temperate reef fish. J Exp Mar Bio Ecol 191:209–222. doi:10.1016/0022-0981(95)00058-Y

    Article  Google Scholar 

  • Tupper M, Boutilier RG (1997) Effects of habitat on settlement, growth, predation risk and survival of a temperate reef fish. Mar Ecol Prog Ser 151:225–236. doi:10.3354/meps151225

    Article  Google Scholar 

  • Vermeij M (2005) Substrate composition and adult distribution determine recruitment patterns in a Caribbean brooding coral. Mar Ecol Prog Ser 295:123–133. doi:10.3354/meps295123

    Article  Google Scholar 

  • Victor B (1986) Larval settlement and juvenile mortality in a recruitment-limited coral reef fish population. Ecol Monogr 56:1435–1460

    Article  Google Scholar 

  • Webster M (2003) Temporal density dependence and population regulation in a marine fish. Ecology 84:623–628. doi:10.1890/0012-9658(2003)084[0623:TDDAPR]2.0.CO;2

    Article  Google Scholar 

  • Webster M (2004) Density dependence via intercohort competition in a coral-reef fish. Ecology 85:986–994. doi:10.1890/02-0576

    Article  Google Scholar 

  • Webster M (2003) Temporal density dependence and population regulation in a marine fish. Ecology 84:623–628. doi:10.1890/0012-9658(2003)084[0623:TDDAPR]2.0.CO;2

    Article  Google Scholar 

  • Wellenreuther M (2007) Ecological factors associated with speciation in New Zealand triplefin fishes (Family Tripterygiidae). PhD Dissertation, University of Auckland

  • Wellenreuther M, Clements KD (2008) Determinants of habitat association in a sympatric clade of marine fishes. Mar Biol 154:393–402. doi:10.1007/s00227-008-0940-0

    Article  Google Scholar 

  • Wellenreuther M, Barrett PT, Clements KD (2007) Ecological diversification in habitat use by subtidal triplefin fishes (Tripterygiidae). Mar Ecol Prog Ser 330:235–246

    Article  Google Scholar 

  • Wellenreuther M, Syms C, Clements KD (2008) Consistent spatial patterns across biogeographic gradients in temperate reef fishes. Ecography 31:84–94

    Article  Google Scholar 

  • Wellington GM (1992) Habitat selection and juvenile persistence control the distribution of two closely related Caribbean damselfishes. Oecologia 90:500–508. doi:10.1007/BF01875443

    Article  Google Scholar 

  • White JW, Samhouri JF, Stier AC et al (2010) Synthesizing mechanisms of density dependence in reef fishes: behavior, habitat configuration, and observational scale. Ecology 91:1949–1961. doi:10.1890/09-0298.1

    Article  Google Scholar 

  • Willis T (2001) Visual census methods underestimate density and diversity of cryptic reef fishes. J Fish Biol 59:1408–1411. doi:10.1006/jfbi.2001.1721

    Article  Google Scholar 

  • Wilson JA (2005) Age class interactions in a marine goby, Elacatinus prochilos (Böhlke and Robins, 1968). 327:144–156. doi:10.1016/j.jembe.2005.06.013

  • Wilson JA, Osenberg CW (2002) Experimental and observational patterns of density-dependent settlement and survival in the marine fish, Gobiosoma. Oecologia 130:205–215. doi:10.1007/s004420100784

    Google Scholar 

Download references

Acknowledgments

This research was funded by an ‘OBI Coasts and Oceans’ grant from the New Zealand Foundation for Research, Science and Technology that was awarded to the National Institute of Water and Atmospheric science (NIWA) with a subcontract to JS, and a Marsden grant awarded to JS. Logistic support was provided by the Victoria University Coastal Ecology Lab (VUCEL), of which this paper is a contribution. We gratefully acknowledge the research and technical assistance from the following people: S. Geange, C. Cardenas, D. Morton, A. Powell, D. Nelson, and S. Jenkins. In addition, we thank T. Jones for assistance with statistical analysis. R. Cole provided a useful sounding board for ideas, and we dedicate this paper to his memory. S.Geange, A. Powell, D. McNaughtan, and two anonymous reviewers provided helpful comments on earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Mensink.

Additional information

Communicated by K. D. Clements.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mensink, P.J., Shima, J.S. Patterns of co-occurrence and interactions between age classes of the common triplefin, Forsterygion lapillum . Mar Biol 161, 1285–1298 (2014). https://doi.org/10.1007/s00227-014-2418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2418-6

Keywords

Navigation