Skip to main content

Advertisement

Log in

Identifying trophic relationships within the high Arctic benthic community: how much can fatty acids tell?

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Multivariate analysis of fatty acids (FA) profiles proved to be a useful tool for demonstrating feeding preferences of Arctic invertebrates belonging to several taxonomic groups collected during summer and winter seasons in the Spitsbergen fjords (Arctic). Within phytodetrivorous taxa, the enhanced proportions of 16:1n-7, C16 polyunsaturated fatty acids (PUFA) and 20:5n-3 in crustaceans clearly reflected selective ingestion of diatoms, while high amounts of 22:6n-3 and C18 FAs found in molluscs indicated flagellate-based nutrition. High levels of C20 PUFA and 16:1n-7 together with the typical bacterial FAs were found in winter specimens of deposit-feeding polychaetes showing their reliance on highly reworked organic matter during this season. Our results suggest that 18:1n-9 may not be a reliable marker of carnivory feeding within benthic taxa. Lipid signatures of omnivores and carnivores/detrivores usually originated from a variety of dietary sources, of which few possess highly characteristic FA features. Still, elevated levels of Calanus markers (20:1 and 22:1 moieties) characterized species linked to the pelagic food chains, while 20:4n-6 proved to be a useful indicator of foraminiferan consumption. We highlight the need for a multimethod approach, since complexity of benthic food webs along with general lack of unambiguous FA trophic markers prevents tracking of trophic relationships with use of FA analysis alone. Based on their FA composition, we showed that benthic species represent a source of essential PUFA and could play a fundamental role in the Arctic food webs transferring energy derived from variable pelagic and benthic resources to upper trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. Primer-E, Plymouth, pp 1–214

    Google Scholar 

  • Barnathan G (2009) Non-methylene-interrupted fatty acids from marine invertebrates: occurrence, characterization and biological properties. Biochimie 91:671–678

    CAS  Google Scholar 

  • Bergmann M, Dannheim J, Bauerfeind E, Klages M (2009) Trophic relationships along a bathymetric gradient at the deep-sea observatory Hausgarten. Deep Sea Res I 56:408–424

    CAS  Google Scholar 

  • Birkely SR, Gulliksen B (2003) Feeding ecology in five shrimp species (decapoda, caridea) from an Arctic fjord (Isfjorden, Svalbard), with emphasis on Sclerocrangon boreas (Phipps, 1774). Crustaceana 76(6):699–715

    Google Scholar 

  • Błażewicz-Paszkowycz M, Ligowski R (2002) Diatoms as food source indicator for some Antarctic Cumacea and Tanaidacea (Crustacea). Antarct Sci 14(1):11–15

    Google Scholar 

  • Boon AR, Duineveld GCA (2012) Phytopigments and fatty acids in the gut of the deposit-feeding heart urchin Echinocardium cordatum in the southern North Sea: selective feeding and its contribution to the benthic carbon budget. J Sea Res 67:77–84

    CAS  Google Scholar 

  • Budge SM, Parrish CC (1998) Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Org Geochem 29:1547–1559

    CAS  Google Scholar 

  • Budge SM, Springer AM, Iverson SJ, Sheffield G (2007) Fatty acid biomarkers reveal niche separation in an arctic benthic food web. Mar Ecol Prog Ser 336:305–309

    CAS  Google Scholar 

  • Cochrane SKJ, Pearson TH, Greenacre M, Costelloe J, Ellingsen IH, Dahle S, Gulliksen B (2012) Benthic fauna and functional traits along a polar front transect in the Barents Sea—advancing tools for ecosystem-scale assessments. J Mar Syst 94:204–217

    Google Scholar 

  • Cucci TL, Shumway SE, Newell RC, Selvin R, Guillard RL, Yentsch CM (1985) Flow cytometry by: a new method for characterization of differential ingestion, digestion and egestionsuspension feeders. Mar Ecol Prog Ser 24:201–204

    Google Scholar 

  • Dahl E (1979) Deep-sea carrion feeding amphipods: evolutionary patterns in niche adaptations. Oikos 33:167–175

    Google Scholar 

  • Dahl TM, Falk-Petersen S, Gabrielsen GW, Sargent JR, Hop H, Millar RM (2003) Lipids and stable isotopes in common eider, black-legged kittiwake and northern fulmar: a trophic study from an Arctic fjord. Mar Ecol Prog Ser 256:257–269

    CAS  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Muller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–352

    Google Scholar 

  • Drazen JC, Phleger CF, Guest MA, Nichols PD (2008a) Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: food web implications. Comp Biochem Phys B 151:79–87

    Google Scholar 

  • Drazen JC, Phleger CF, Guest MA, Nichols PD (2008b) Lipid, sterols and fatty acids of abyssal polychaetes, crustaceans, and a cnidarian from the northeast Pacific Ocean: food web implications. Mar Ecol Prog Ser 372:157–167

    CAS  Google Scholar 

  • Dunton KH, Saupe SM, Golikov AN, Schell DM, Schonberg SV (1989) Trophic relationships and isotopic gradients among arctic and subarctic marine fauna. Mar Ecol Prog Ser 56:89–97

    Google Scholar 

  • Falk-Petersen S, Sargent JR, Henderson J, Hagseth EN, Hop H, Okolodkov YB (1998) Lipids and fatty acids in ice algae and phytoplankton from the Marginal Ice Zone in the Barents Sea. Polar Biol 20:41–47

    Google Scholar 

  • Falk-Petersen S, Haug T, Nilsen KT, Wold A, Dahl TM (2004) Lipids and trophic linkages in harp seal (Phoca groenlandica) from the eastern Barents Sea. Polar Res 23(1):43–50

    Google Scholar 

  • Fauchald K, Bellan G (2013) Caulleriella killariensis (Southern, 1914). In: Read G, Fauchald K (ed) (2013) World polychaeta database. http://www.marinespecies.org/polychaeta/aphia.php?p=taxdetails&id=129945. Accessed on 2013-09-11

  • Fauchald K, Jumars PA (1979) The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Annu Rev 17:193–284

    Google Scholar 

  • Findlay RH, Trexler MB, Guckert JB, White DC (1990) Laboratory study of disturbance in marine sediments: response of a microbial community. Mar Ecol Prog Ser 62:121–133

    Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Gazulha VI, Mansur MCD, Cybis LF, Azevedo SMFO (2012) Feeding behavior of the invasive bivalve Limnoperna fortunei (Dunker, 1857) under exposure to toxic cyanobacteria Microcystis aeruginosa. Braz J Biol 72(1), http://dx.doi.org/10.1590/S1519-69842012000100005

  • Gillies CL, Stark JS, Johnstone GJ, Smith SDA (2012) Carbon flow and trophic structure of an Antarctic coastal benthic community as determined by δ13C and δ 15N. Estuar Coast Shelf S 97:44–57

    CAS  Google Scholar 

  • Graeve M, Kattner G, Piepenburg D (1997) Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biol 18:53–61

    Google Scholar 

  • Graeve M, Dauby P, Scailteur Y (2001) Combined lipid, faty acid and digestive tract content analyses a penetrating approach to estimate feeding modes of Antarctic amphipods. Polar Biol 24:853–862

    Google Scholar 

  • Graeve M, Wiencke C, Karsten U (2002) Fatty acid composition of Arctic and Antarctic macroalgae: indicators for phylogenetic and trophic relationships. Mar Ecol Prog Ser 231:67–74

    CAS  Google Scholar 

  • Grebmeier JM, Barry JP (1991) The influence of oceanographic processes on pelagic-benthic coupling in polar regions: a benthic perspective. J Mar Syst 2:495–518

    Google Scholar 

  • Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty acids profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147–158

    CAS  Google Scholar 

  • Guerra-Gracia JM, Martinez-Pita I, Pita ML (2004) Fatty acid composition of the Caprellidea (Crustacea: Amphipoda) from the Strait of Gibraltar. Sci Mar 68:501–510

    Google Scholar 

  • Guijarro Garcia E, Ragnarsson SA, Eiriksson H (2006) Effects of scallop dredging on macrobenthic communities in west Iceland. ICES J Mar Sci 63:434–443

    Google Scholar 

  • Hall D, Lee SY, Meziane T (2006) Fatty acids as trophic tracers in an experimental estuarine food chain: tracer transfer. J Exp Mar Biol Ecol 336:42–53

    CAS  Google Scholar 

  • Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843

    CAS  Google Scholar 

  • Hobson KA, Welch HE (1992) Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar Ecol Prog Ser 84:9–18

    CAS  Google Scholar 

  • Hobson KA, Fisk A, Karnovsky NJ, Holst M, Gagnon JM, Fortier M (2002) A stable isotope (δ13C, δ15N) model for the North water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Res Part II 49:5131–5150

    CAS  Google Scholar 

  • Hopkins CCE, Sargent JR, Nilssen EM (1993) Total lipid content, and lipid and fatty acid composition of the deep-water prawn Pandalus borealis from Balsfjord, northern Norway: growth and feeding relationships. Mar Ecol Prog Ser 96:217–228

    CAS  Google Scholar 

  • Howell KL, Pond DW, Billett DSM, Tyler PA (2003) Feeding ecology of deep-sea seastars (Echinodermata: Asteroidea): a fatty-acid biomarker approach. Mar Ecol Prog Ser 255:193–206

    CAS  Google Scholar 

  • Iken K, Brey T, Wand U, Voigt J, Junghans P (2001) Food web structure of the benthic community at the Porcupine abyssal Plain (NE Atalntic): a stable isotope analysis. Prog Oceanogr 50:383–405

    Google Scholar 

  • Iken K, Bluhm BA, Gradinger R (2005) Food web structure in the high Arctic Canada Basin: evidence from δ13C and δ15N analysis. Polar Biol 28:238–249

    Google Scholar 

  • Iken K, Bluhm B, Dunton K (2010) Benthic food-web structure under differing water mass properties in the southern Chukchi Sea. Deep Sea Res Part II 57:71–85

    CAS  Google Scholar 

  • Iverson SJ (2009) Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, New York, pp 281–307

    Google Scholar 

  • Kaczmarek H, Włodarska-Kowalczuk M, Legeżyńska J, Zajączkowski M (2005) Shallow sublittoral macrozoobenthos in Kongsfjord, West Spitsbergen, Svalbard. Pol Polar Res 26:137–155

    Google Scholar 

  • Kędra M, Kuliński K, Walkusz W, Legeżyńska J (2012) The shallow benthic food web structure in the high Arctic does not follow seasonal changes in the surrounding environment. Estuar Coast Shelf S 114:183–191

    Google Scholar 

  • Kelly JR, Scheibling RE (2012) Fatty acids as dietary tracers in benthic food webs. Mar Ecol Prog Ser 446:1–22

    CAS  Google Scholar 

  • Kelly JR, Scheibling RE, Iverson SJ, Gagnon P (2008) Fatty acid profiles in the gonads of the sea urchin Strongylocentrotus droebachiensis on natural algal diets. Mar Ecol Prog Ser 373:1–9

    CAS  Google Scholar 

  • Kharlamenko VI, Kiyashko SI, Imbs AB, Vyshkvartzev DI (2001) Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses. Mar Ecol Prog Ser 220:103–117

    CAS  Google Scholar 

  • Lancaster I (1988) Pagurus bernhardus (L.)—an introduction to the natural history of hermit crabs. Field Stud 7:189–238

    Google Scholar 

  • Lee RF, Hagen W, Kattnet G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    CAS  Google Scholar 

  • Legeżyńska J (2008) Food resources partitioning among Arctic sublittoral lysianassoid amphipods in summer. Polar Biol 31:663–670

    Google Scholar 

  • Legeżyńska J, Węsławski JM, Presler P (2000) Benthic scavengers collected by baited traps in the high Arctic. Polar Biol 23:539–544

    Google Scholar 

  • Legeżyńska J, Kędra M, Walkusz W (2012) When season does not matter: summer and winter trophic ecology of Arctic amphipods. Hydrobiol 684:189–214

    Google Scholar 

  • Link J (2002) Does food web theory work for marine ecosystems? Mar Ecol Prog Ser 230:1–9

    Google Scholar 

  • Lovvorn JR, Cooper LW, Brooks ML, DeRuyck CC, Bump JK, Grebmeier JM (2005) Organic matter pathways to zooplankton and benthos under pack ice in late winter and open water in late summer in the north-central Bering Sea. Mar Ecol Prog Ser 291:135–150

    CAS  Google Scholar 

  • MacNeil CJT, Dick A, Elwood RW (1997) The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the functional feeding group concept. Biol Rev 72:349–364

    Google Scholar 

  • Mayzaud P, Laureillard J, Merien D, Brinis A, Godard C, Razouls S, Labat J-P (2007) Zooplankton nutrition, storage and fecal lipid composition in different water masses associated with the Agulhas and Subtropical Fronts. Mar Chem 107:202–213

    CAS  Google Scholar 

  • Mayzaud P, Boutoute M, Noyon M, Narcy F, Gasparini S (2013) Lipid and fatty acids in naturally occurring particulate matter during spring and summer in a high arctic fjord (Kongsfjorden, Svalbard). Mar Biol 160:383–398

    CAS  Google Scholar 

  • McMahon KW, Ambrose WG, Johnson BJ, Sun M-Y, Lopez GL, Clough LM, Carroll ML (2006) Benthic community response to ice algae and phytoplankton in Ny-Alesund, Svalbard. Mar Ecol Prog Ser 310:1–14

    Google Scholar 

  • McMeans BC, Rooney N, Arts MT, Fisk AT (2013) Food web structure of a coastal Arctic marine ecosystem and implications for stability. Mar Ecol Prog Ser 482:17–28

    CAS  Google Scholar 

  • Mekhanikova IV (2010) Morphology of mandible and lateralia in six endemic Amphipods (Amphipoda, Gammaridea) from Lake Baikal, in relation to feeding. Crustaceana 83(7):865–887

    Google Scholar 

  • Meziane T, Bodineau L, Retiere C, Thoumelin G (1997) The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France. J Sea Res 38:47–58

    Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melcille K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Google Scholar 

  • Morata N, Renaud PE (2008) Sedimentary pigments in the western Barents Sea: a reflection of pelagic-benthic coupling? Deep Sea Res II Special Issue CABANERA 55:2381–2389

    CAS  Google Scholar 

  • Nelson MM, Mooney B, Nichols JD, Phleger CF (2001) Lipids of Antarctic Ocean amphipods: food chain interactions and the occurrence of novel biomarkers. Mar Chem 73:53–64

    CAS  Google Scholar 

  • Norkko A, Thrush SF, Cummings VJ, Gibbs MN, Andrew NL, Norkko J, Schwarz AM (2007) Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88:2810–2820

    CAS  Google Scholar 

  • Nygård H, Berge J, Søreide JE, Vihtakari M, Falk-Petersen S (2012) The amphipod scavenging guild in two Arctic fjords: seasonal variations, abundance and trophic interactions. Aquat Biol 14:247–264

    Google Scholar 

  • Nyssen FT, Brey T, Dauby P, Graeve M (2005) Trophic position of Antarctic amphipods—enhanced analysis by a 2-dimentional biomarker assay. Mar Ecol Prog Ser 300:135–145

    CAS  Google Scholar 

  • Paradis M, Ackman BG (1977) Potential for employing the distribution of anomalous non-methylene-interrupted dienoic fatty acids in several marine invertebrates as part of food web studies. Lipids 12:170–176

    CAS  Google Scholar 

  • Parrish CC (2009) Essential fatty acids in aquatic food webs. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, Berlin, pp 309–326

    Google Scholar 

  • Percy JA (1979) Seasonal changes in organic composition and caloric content of an Arctic marine amphipod, Onisimus (=Boeckosimus) affinis H.J. Hansen. J Exp Mar Biol Ecol 40:183–192

    Google Scholar 

  • Pernet F, Malet N, Pastoureaud A, Vaquer A, Quéré C, Dubroca L (2012) Marine diatoms sustain growth of bivalves in a Mediterranean lagoon. J Sea Res 68:20–32

    CAS  Google Scholar 

  • Peters J, Renz J, van Beusekom J, Boersma M, Hagen W (2006) Trophodynamics and seasonal cycle of the copepod Pseudocalanus acuspes in the Central Baltic Sea (Bornholm Basin): evidence from lipid composition. Mar Biol 149:1417–1429

    Google Scholar 

  • Piepenburg D, Archambault P, Ambrose WG Jr, Blanchard A, Bluhm BA, Carroll ML, Conlan KE, Cusson M, Feder HM, Grebmeier JM, Jewett SC, Lévesque M, Petryashev VV, Sejr MK, Sirenko BI, Włodarska-Kowalczuk M (2011) Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas. Mar Biodivers 41:51–70

    Google Scholar 

  • Pike D, Welch HE (1990) Spatial and temporal distribution of sub-ice macrofauna in the Barrow Strait area, Northwest Territories. Can J Fish Aquat Sci 47:81–91

    Google Scholar 

  • Pitt KA, Connolly RM, Meziane T (2009) Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review. Hydrobiol 616:119–132

    CAS  Google Scholar 

  • Ramos R, Gonzales-Solis J (2012) Trace me if you can: the use of intrinsic biogeochemical markers in marine top predators. Front Ecol Environ 10:258–266

    Google Scholar 

  • Renaud PE, Carroll ML, Ambrose Jr WG (2008) Effects of global warming on Arctic sea-floor communities and its consequences for higher trophic levels. In: Duarte CM (Ed) Impacts of global warming on polar ecosysyems. Fundacion BBVA (Banco Bilbao Vizcaya Argentaria), Bilbao, Spain, pp 139–177

  • Renaud PE, Tessmann M, Evenset A, Christensen GN (2011) Benthic food-web structure of an Arctic fjord (Kongsfjorden, Svalbard). Mar Biol Res 7:13–26

    Google Scholar 

  • Reuss N, Poulsen LK (2002) Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Greenland. Mar Biol 141:423–434

    CAS  Google Scholar 

  • Richoux NB, Deibel D, Thompson RJ, Parrish CC (2005) Seasonal and developmental variation in the fatty acid composition of Mysis mixta (Mysidacea) and Acanthostepheia malmgreni (Amphipoda) from the hyperbenthos of a cold-ocean environment (Conception Bay, Newfoundland). J Plankton Res 27:719–733

    CAS  Google Scholar 

  • Rooney N, McCann KS (2012) Integrating diversity, food web structure and stability. Trends Ecol Evol 27:40–46

    Google Scholar 

  • Sainte-Marie B (1984) Morphological adaptations for carrion feeding in four species of littoral and circalittoral lysianassid amphipods. Can J Zool 62:1668–1674

    Google Scholar 

  • Sargent JR, Falk-Petersen S (1981) Ecological investigations on the zooplankton community in Balsfjorden, northern Norway: lipids and fatty acids in Meganyctiphanes norvegica, Thysanoessa raschi and T. inermis during mid-winter. Mar Biol 62:131–137

    CAS  Google Scholar 

  • Sargent JR, Falk-Pettersen S (1988) The lipid biochemistry of calanoid copepods. Hydrobiol 167(168):101–114

    Google Scholar 

  • Sargent JR, Parkers RJ, Mueller-Harvey L, Henderson RJ (1987) Lipid biomarkers in marine ecology. In: Sleigh MA (ed) Microbes in the Sea. Ellis Horwood Ltd, Chicheste, pp 119–138

    Google Scholar 

  • Scott CL, Falk-Pettersen S, Sargent JR, Hop H, Lønne OJ, Poltermann M (1999) Lipids and trophic interactions of ice fauna and pelagic zooplankton in the marginal ice zone of the Barents Sea. Polar Biol 21:65–70

    Google Scholar 

  • Scott CL, Falk-Pettersen S, Gulliksen B, Lønne OJ, Sargent JR (2001) Lipid indicators of the diet of the sympagic amphipod Gammarus wilkitzkii in the Marginal Ice Zone and in open waters of Svalbard (Arctic). Polar Biol 24:572–576

    Google Scholar 

  • Seuthe L, Rokkan Iversen K, Narcy F (2011) Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biol 34:751–766

    Google Scholar 

  • Shirley TC (1990) Ecology of Priapulus caudatus Lamarck, 1816 (Priapulida) in an Alaskan subarctic ecosystem. Bull Mar Sci 47:149–158

    Google Scholar 

  • Shumway SE, Cucci T, Newell RC, Yentsch CM (1985) Particle selection, ingestion, and absorption in filter-feeding bivalves. J Exp Mar Biol Ecol 91:77–92

    Google Scholar 

  • Smetacek V (2012) Making sense of ocean biota: how evolution and biodiversity of land organisms differ from that of the plankton. J Biosci 37(4):589–607

    Google Scholar 

  • Smith GA, Nichols PD, White DC (1986) Fatty acid composition and microbial activity of benthic marine sediment from McMurdo Sound, Antarctica. FEMS Microbiol Ecol 38:219–231

    CAS  Google Scholar 

  • Søreide JE, Nygård H (2012) Challenges using stable isotopes for estimating trophic levels in marine amphipods. Polar Biol 35:447–453

    Google Scholar 

  • Søreide JE, Falk-Petersen S, Hegseth EN, Hop H, Carroll ML, Hobson KA, Błachowiak-Samołyk K (2008) Seasonal feeding strategies of Calanus in the high-ArcticSvalbard region. Deep Sea Res Part II 55:2225–2244

    Google Scholar 

  • Stevens CJ, Deibel D, Parrish CC (2004) Species-specific differences in lipid composition and omnivory indices in Arctic copepods collected in deep water during autumn (North Water Polynya). Mar Biol 144:905–915

    Google Scholar 

  • Stübing D, Hagen W (2003) Fatty acid biomarker ratios—suitable trophic indicators in Antarctic euphausiids? Polar Biol 26:774–782

    Google Scholar 

  • Suhr SB, Pond DW, Gooday AJ, Smith CR (2003) Selective feeding by benthic foraminifera on phytodetritus on the western Antarctic Peninsula shelf: evidence from fatty acid biomarker analysis. Mar Ecol Prog Ser 262:153–162

    Google Scholar 

  • Sun M-Y, Clough LM, Carroll ML, Dai J, Ambrose WG Jr, Lopez GR (2009) Different responses of two common Arctic macrobenthic species (Macoma balthica and Monoporeia affinis ) to phytoplankton and ice algae: Will climate change impacts be species specific? J Exp Mar Biol Ecol 376:110–121

    Google Scholar 

  • Tamelander T, Reigstad M, Hop H, Carroll ML, Wassmann P (2008) Pelagic and sympagic contribution of organic matter to zooplankton and vertical export in the Barents Sea marginal ice zone. Deep Sea Res II 55:2330–2339

    CAS  Google Scholar 

  • Thiel M, Kruse I (2001) Status of the Nemertea as predators in marine ecosystems. Hydrobiol 456:21–32

    Google Scholar 

  • Trott TJ (1998) Gustatory responses of Priapulus caudatus de Lamarck, 1816 (Priapulida, Priapulidae): feeding behavior and chemoreception by a living fossil. Mar Fresh Behav Phy 31(4):251–257

    Google Scholar 

  • Volkman JK, Johns RB, Gillan FT, Perry GJ, Bavor HJ Jr (1980) Microbial lipids of an intertidal sediment–I. Fatty acids and hydrocarbons. Geochim Cosmochim Acta 44:1133–1143

    Google Scholar 

  • Ward JE, Shumway SE (2004) Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. J Exp Mar Biol Ecol 300:83–130

    Google Scholar 

  • Węsławski JM, Kendall MA, Włodarska-Kowalczuk M, Iken K, Legeżyńska J, Kedra M, Sejr M (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity. Mar Biodivers 41:71–85

    Google Scholar 

  • Wessels H, Karsten U, Wiencke C, Hagen W (2012) On the potential of fatty acids as trophic markers in Arctic grazers: feeding experiments with sea urchins and amphipods fed nine diets of macroalgae. Polar Biol 35:555–565

    Google Scholar 

  • Wiencke C, Fisher G (1990) Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Mar Ecol Prog Ser 65:283–292

    Google Scholar 

  • Wiktor J (1999) Early spring microplankton development under fast ice covered fjords of Svalbard, Arctic. Oceanologia 41:51–72

    Google Scholar 

  • Woelfell J, Schumann R, Peine F, Flohr A, Kruss A, Tęgowski J, Blonde P, Wiencke C, Karsten U (2010) Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line. Bot Mar 52(6):573–583

    Google Scholar 

  • Wold A, Jæger I, Hop H, Gabrielsen GW, Falk-Petersen S (2011) Arctic seabird food chains explored by fatty acid composition and stable isotopes in Kongsfjorden, Svalbard. Polar Biol 34:1147–1155

    Google Scholar 

  • Würzberg L, Peters J, Brandt A (2011a) Fatty acid patterns of Southern Ocean shelf and deep sea peracarid crustaceans and a possible food source, foraminiferans. Deep Sea Res II 58:2027–2035

    Google Scholar 

  • Würzberg L, Peters J, Schüller M, Brandt A (2011b) Diet insights of deep-sea polychaetes derived from fatty acid analyses. Deep Sea Res II 58:153–162

    Google Scholar 

Download references

Acknowledgments

Funding for this study came from European Centre for Arctic Environmental Research (ARCFAC) (grant: ARCFAC-026129-2009-28) and Polish Ministry of Science (grants: 1033/ARCFAC/2009/7 and 0252/B/P01/2009/36). This research would not have been possible without the support and great company of Wojtek Moskal, Józef Wiktor and Agata Zaborska. Three anonymous reviewers and prof. Maria Włodarska-Kowalczuk provided excellent comments, which have greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Legeżyńska.

Additional information

Communicated by U. Sommer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legeżyńska, J., Kędra, M. & Walkusz, W. Identifying trophic relationships within the high Arctic benthic community: how much can fatty acids tell?. Mar Biol 161, 821–836 (2014). https://doi.org/10.1007/s00227-013-2380-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2380-8

Keywords

Navigation