Skip to main content
Log in

Frequency of multiple paternity varies between two populations of brown smoothhound shark, Mustelus henlei

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Multiple paternity was recently observed in a population of the brown smoothhound shark, Mustelus henlei, from Las Barrancas, Baja California Sur, Mexico, with litters demonstrating the greatest percentage of multiple paternity for any shark species (93 % of litters and an average number of sires = 2.3). To determine whether this frequency is consistent elsewhere in the species’ range, 4 polymorphic microsatellite loci were used to determine the frequency of multiple paternity in 18 litters of M. henlei from Santa Catalina Island, CA, sampled in 2004, 2008, and 2012. Multiple paternity varied among sampling years with 2004 demonstrating multiple sires for 40 % of sampled litters (n = 10) with an average of 1.4 sires per litter and 2008/2012 demonstrating a total lack of multiply sired litters (n = 8). Although multiple paternity was detected in this study, the range of frequencies observed is lower than that observed in the Mexican population. Based on these findings, investigators should take location into consideration when assessing the existence of multiple paternity in future studies of elasmobranch species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Nat Acad Scie USA 98:4563–4568

    Article  CAS  Google Scholar 

  • Bonfil R (1994) Overview of world elasmobranch fisheries. Food and Agriculture Administration of the United Nations, Rome

    Google Scholar 

  • Boomer JJ, Harcourt RG, Francis MP, Walker TI, Braccini JM, Stow AJ (2013) Frequency of multiple paternity in gummy shark, Mustelus antarcticus, and rig, Mustelus lenticulatus, and the implications of mate encounter rate, postcopulatory influences, and reproductive mode. J Hered, pp 1–9. doi:10.1093/Jhered/est010

  • Byrne RJ, Avise JC (2012) Genetic mating system of the brown smoothhound shark (Mustelus henlei), including a literature review of multiple paternity in other elasmobranch species. Mar Biol 159:749–756

    Article  Google Scholar 

  • Calsbeek R, Bonneaud C, Prabhu S, Manoukis N, Smith TB (2007) Multiple paternity and sperm storage lead to increased genetic diversity in Anolis lizards. Evol Ecol Res 9:495

    Google Scholar 

  • Castro JI (2011) The sharks of North America. Oxford University Press, New York

    Google Scholar 

  • Castro-Aguirre JL, Antuna A, González-Acosta AF, Cruz-Agüero J (2005) Mustelus albipinnis sp. nov. (Chondrichthyes: Carcharhiniformes: Triakidae) de la costa suroccidental de Baja California Sur. México Hidrobiol 15:123–130

    Google Scholar 

  • Chabot CL (2012) Characterization of 11 microsatellite loci for the brown smooth-hound shark, Mustelus henlei (Triakidae), discovered with next-generation sequencing. Cons Genet Resour 4:23–25

    Article  Google Scholar 

  • Chabot CL, Allen LG (2009) Global population structure of the tope (Galeorhinus galeus) inferred by mitochondrial control region sequence data. Mol Ecol 18:545–552

    Article  CAS  Google Scholar 

  • Chapman T, Liddle LF, Kalb JM, Wolfner MF, Partridge L (1995) Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373:241–244

    Article  CAS  Google Scholar 

  • Chapman DD, Prodohl PA, Gelsleichter J, Manire CA, Shivji MS (2004) Predominance of genetic monogamy by females in a hammerhead shark, Sphyrna tiburo: implications for shark conservation. Mol Ecol 13:1965–1974. doi:10.1111/j.1365-294X.2004.02178.x

    Article  CAS  Google Scholar 

  • Chapman DD, Wintner SP, Abercrombie DL, Ashe J, Bernard AM, Shivji MS, Feldheim KA (2013) The behavioural and genetic mating system of the sand tiger shark, Carcharias taurus, an intrauterine cannibal. Biol Lett 9:1–4. doi:10.1098/rsbl 2013.0003

    Article  Google Scholar 

  • Chevolot M, Ellis JR, Rijnsdorp AD, Stam WT, Olsen JL (2007) Multiple paternity analysis in the thornback ray Raja clavata L. J Hered 98:712–715

    Article  CAS  Google Scholar 

  • Cohas A, Yoccoz NG, Allainé D (2006) Extra-pair paternity in alpine marmots, Marmota marmota: genetic quality and genetic diversity effects. Behav Ecol Sociobiol 61:1081–1092

    Article  Google Scholar 

  • Coleman FC, Figueira WF, Ueland JS, Crowder LB (2004) The impact of United States recreational fisheries on marine fish populations. Science 305:1958–1960. doi:10.1126/science.1100397

    Article  CAS  Google Scholar 

  • Compagno LJV (1984) FAO species catalogue vol. 4: sharks of the world, an annotated and illustrated catalogue of shark species known to date: pt. 2: Carcharhiniformes. FAO Fish Synop 4:251–655

    Google Scholar 

  • Compagno LJV, Dando M, Fowler S (2005) Sharks of the world. Princeton University Press, Princeton

    Google Scholar 

  • Conrath CL, Musick JA (2002) Reproductive biology of the smooth dogfish, Mustelus canis, in the northwest Atlantic Ocean. Environ Biol Fishes 64:367–377

    Article  Google Scholar 

  • Cortés E (2000) Life history patterns and correlations in sharks. Rev Fish Sci 8:299–344

    Google Scholar 

  • Daly-Engel TS, Grubbs RD, Bowen BW, Toonen RJ (2007) Frequency of multiple paternity in an unexploited tropical population of sandbar sharks (Carcharhinus plumbeus). Canad J Fish Aquat Sci 64:198–204

    Article  Google Scholar 

  • DiBattista JD, Feldheim KA, Gruber SH, Hendry AP (2008) Are indirect genetic benefits associated with polyandry? Testing predictions in a natural population of lemon sharks. Mol Ecol 17:783–795. doi:10.1111/j.1365-294X.2007.03623.x

    Article  Google Scholar 

  • Ebert DA (2003) Sharks, rays, and chimaeras of California. California Press, Berkeley

    Google Scholar 

  • Eschmeyer WN, Herald ES, Hammann H (1999) A field guide to Pacific coast fishes: North America. Houghton Mifflin Company, Boston

    Google Scholar 

  • Farrell ED, Mariani S, Clarke MW (2010) Reproductive biology of the starry smooth-hound shark Mustelus asterias: geographic variation and implications for sustainable exploitation. J Fish Biol 77:1505–1525

    Article  CAS  Google Scholar 

  • Feldheim KA, Gruber SH, Ashley MV (2004) Reconstruction of parental microsatellite genotypes reveals female polyandry and philopatry in the lemon shark. Negaprion Brevirostris Evol 58:2332–2342

    Article  CAS  Google Scholar 

  • Fitzpatrick JL, Kempster RM, Daly-Engel TS, Collin SP, Evans JP (2012) Assessing the potential for post-copulatory sexual selection in elasmobranchs. J Fish Biol 80:1141–1158

    Article  CAS  Google Scholar 

  • Frisk MG, Miller TJ, Fogarty MJ (2001) Estimation and analysis of biological parameters in elasmobranch fishes: a comparative life history study. Canad J Fish Aquat Sci 58:969–981

    Article  Google Scholar 

  • Hamlett WC, Musick JA, Hysell CK, Sever DM (2002) Uterine epithelial-sperm interaction, endometrial cycle and sperm storage in the terminal zone of the oviducal gland in the placental smoothhound, Mustelus canis. J Exp Zool 292:129–144

    Article  Google Scholar 

  • Heist EJ, Carrier JC, Pratt HLP Jr, Pratt TC (2011) Exact enumeration of sires in the polyandrous nurse shark (Ginglymostoma cirratum). Copeia 2011:539–544

    Article  Google Scholar 

  • Hoenig JM, Gruber SH (1990) Life-history patterns in the elasmobranchs: implications for fisheries management. In: Pratt HL Jr, Gruber SH, Taniuchi T (eds) Elasmobranchs as living resources: advances in biology, ecology, systematics and the status of the fisheries. US Department of Commerce, NOAA Technical Report NMFS 90, pp 1–16

  • Jones AG (2005) Gerud2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol Ecol Notes 5:708–711

    Article  CAS  Google Scholar 

  • Karl SA (2008) The effect of multiple paternity on the genetically effective size of a population. Mol Ecol 17:3973–3977

    Article  Google Scholar 

  • Keeney DB, Heupel MR, Hueter RE, Heist EJ (2005) Microsatellite and mitochondrial DNA analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Mol Ecol 14:1911–1923

    Article  CAS  Google Scholar 

  • Keller L, Reeve HK (1995) Why do females mate with multiple males: the sexually selected sperm hypothesis. Adv Study Behav 24:291–315

    Article  Google Scholar 

  • Kempenaers B, Verheyen GR, Vandenbroeck M, Burke T, Vanbroeckhoven C, Dhondt AA (1992) Extra-pair paternity results from female preference for high-quality males in the blue tit. Nature 357:494–496

    Article  Google Scholar 

  • Kempenaers B, Verheyen GR, Dhondi AA (1997) Extrapair paternity in the blue tit (Parus caeruleus): female choice, male characteristics, and offspring quality. Behav Ecol 8:481–492

    Article  Google Scholar 

  • Krokene C, Rigstad K, Dale M, Lifjeld JT (1998) The function of extrapair paternity in blue tits and great tits: good genes or fertility insurance? Behav Ecol 9:649–656

    Article  Google Scholar 

  • Lage CR, Petersen CW, Forest D, Barnes D, Kornfield I, Wray C (2008) Evidence of multiple paternity in spiny dogfish (Squalus acanthias) broods based on microsatellite analysis. J Fish Biol 73:2068–2074

    Article  Google Scholar 

  • Lodé T, Lesbarrères D (2004) Multiple paternity in Rana dalmatina, a monogamous territorial breeding anuran. Naturwissenschaften 91:44–47

    Article  CAS  Google Scholar 

  • Love M (1996) Probably more than you want to know about the fishes of the Pacific coast. Really Big Press, Santa Barbara

    Google Scholar 

  • Love MS (2011) Certainly more than you want to know about the fishes of the Pacific coast: a post modern experience. Really Big Press, Santa Barbara

    Google Scholar 

  • Madsen T, Ujvari B, Olsson M, Shine R (2005) Paternal alleles enhance female reproductive success in tropical pythons. Mol Ecol 14:1783–1787

    Article  Google Scholar 

  • Miller DJ, Lea RN (1972) Guide to the Coastal Marine Fishes of California. State of California, Department of Fish and Game

  • Moore JA, Nelson NJ, Keall SN, Daugherty CH (2008) Implications of social dominance and multiple paternity for the genetic diversity of a captive-bred reptile population (tuatara). Conserv Genet 9:1243–1251

    Article  Google Scholar 

  • Musick JA, Burgess G, Cailliet G, Camhi M, Fordham S (2000) Management of sharks and their relatives (Elasmobranchii). Fisheries 25:9–13

    Article  Google Scholar 

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283

    Article  CAS  Google Scholar 

  • Myers EM, Zamudio KR (2004) Multiple paternity in an aggregate breeding amphibian: the effect of reproductive skew on estimates of male reproductive success. Mol Ecol 13:1951–1963

    Article  CAS  Google Scholar 

  • Neff BD, Pitcher TE (2002) Assessing the statistical power of genetic analyses to detect multiple mating in fishes. J Fish Biol 61:739–750

    Article  Google Scholar 

  • Nosal AP, Lewallen EA, Burton RS (2013) Multiple paternity in leopard shark (Triakis semifasciata) litters sampled from a predominantly female aggregation in La Jolla, California, USA. J Exp Mar Biol Ecol 446:110–114

    Article  Google Scholar 

  • Pearse DE, Janzen FJ, Avise JC (2002) Multiple paternity, sperm storage, and reproductive success of female and male painted turtles (Chrysemys picta) in nature. Behav Ecol Sociobiol 51:164–171

    Article  Google Scholar 

  • Pérez-Jiménez JC, Nishizaki OS, Castillo Geniz JL (2005) A new eastern North Pacific smoothhound shark (Genus Mustelus, Family Triakidae) from the Gulf of California. Copeia 2005:834–845

    Article  Google Scholar 

  • Portnoy DS (2010) Molecular insights into elasmobranch reproductive behavior for conservation and management. In: Carrier JC, Musick JA, Heithaus MR (eds) Sharks and their relatives II: biodiversity, adaptive physiology, and conservation. CRC Press, Boca Raton, pp 435–457

    Chapter  Google Scholar 

  • Portnoy DS, Piercy AN, Musick JA, Burgess GH, Graves JE (2007) Genetic polyandry and sexual conflict in the sandbar shark, Carcharhinus plumbeus, in the western North Atlantic and Gulf of Mexico. Mol Ecol 16:187–197

    Article  CAS  Google Scholar 

  • Pratt HL, Carrier JC (2001) A review of elasmobranch reproductive behavior with a case study on the nurse shark, Ginglymostoma cirratum. Environ Biol Fishes 60:157–188

    Article  Google Scholar 

  • Ripley WE (1946) The biology of the soupfin, Galeorhinus zyopterus, and biochemical studies of the liver. Fish Bull 64:7–37

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Saville KJ, Lindley AM, Maries EG, Carrier JC, Pratt HL Jr (2002) Multiple paternity in the nurse shark, Ginglymostoma cirratum. Environ Biol Fishes 63:347–351. doi:10.1023/A:1014369011709

    Article  Google Scholar 

  • Smith SE, Au DW, Show C (1998) Intrinsic rebound potentials of 26 species of Pacific sharks. Mar Freshw Res 49:663–678. doi:10.1071/MF97135

    Article  Google Scholar 

  • Storrie MT, Walker TI, Laurenson LJ, Hamlett WC (2008) Microscopic organization of the sperm storage tubules in the oviducal gland of the female gummy shark (Mustelus antarcticus), with observations on sperm distribution and storage. J Morphol 269:1308–1324

    Article  Google Scholar 

  • Stutchbury BJ, Rhymer JM, Morton ES (1994) Extrapair paternity in hooded warblers. Behav Ecol 5:384–392

    Article  Google Scholar 

  • Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Veríssimo A, Grubbs D, McDowell J, Musick J, Portnoy D (2011) Frequency of multiple paternity in the spiny dogfish Squalus acanthias in the western North Atlantic. J Hered 102:88–93

    Article  Google Scholar 

  • Westneat DF, Mays HL (2005) Tests of spatial and temporal factors influencing extra-pair paternity in red-winged blackbirds. Mol Ecol 14:2155–2167

    Article  CAS  Google Scholar 

  • Yasui Y (1998) The ‘genetic benefits’ of female multiple mating reconsidered. Trends Ecol Evol 13:246–250

    Article  CAS  Google Scholar 

  • Yasui Y (2001) Female multiple mating as a genetic bet-hedging strategy when mate choice criteria are unreliable. Ecol Res 16:605–616

    Article  Google Scholar 

  • Young AJ, Spong G, Clutton-Brock T (2007) Subordinate male meerkats prospect for extra-group paternity: alternative reproductive tactics in a cooperative mammal. Proc Roy Soc B Biol Sci 274:1603–1609

    Article  Google Scholar 

  • Yudin KG (1987) Age, growth and aspects of the reproductive biology of two sharks, the gray smoothhound Mustelus californicus and the brown smoothhound M. henlei, from central California. Unpublished MA Thesis, San Francisco State University

  • Yudin KG, Cailliet GM (1990) Age and growth of the gray smoothhound, Mustelus californicus and the brown smoothhound, M. henlei, sharks from central California. Copeia 1990:191–204

    Article  Google Scholar 

  • Zeh JA (1997) Polyandry and enhanced reproductive success in the harlequin-beetle-riding pseudoscorpion. Behav Ecol Sociobiol 40:111–118

    Article  Google Scholar 

  • Zeh JA, Zeh DW (1996) The evolution of polyandry I: intragenomic conflict and genetic incompatibility. Proc Roy Soc Lond Ser B Biol Sci 263:1711–1717

    Article  Google Scholar 

Download references

Acknowledgments

This work would not have been possible without the help of everyone who provided and collected samples for this project, especially Natalie Martinez-Takeshita, Mike Takeshita, Corinne Paterson, Mike Schram, Susanne Plank, Andrew Nosal, and Felipe Galván-Magaña. The completion of this work was facilitated by John Pollinger’s laboratory and analytical assistance as well as Jacqueline Robinson’s assistance with phenol–chloroform DNA extraction. Robert K. Wayne provided lab space for all of the genetic aspects of this project. Insightful discussions with John November pertaining to statistical analyses of the data were illuminating. Donald G. Buth, Paul H. Barber, Edward J. Heist, Larry G. Allen, David K. Jacobs, and V. Reggie Edgerton provided valuable comments on the earlier draft of this paper. Genotyping was performed at the UCLA Genotyping and Sequencing Core. Funding was provided by the UCLA Department of Ecology and Evolutionary Biology Student Research Award, and the Lerner-Gray Fund for Marine Research provided by the American Museum of Natural History.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris L. Chabot.

Additional information

Communicated by T. Reusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chabot, C.L., Haggin, B.M. Frequency of multiple paternity varies between two populations of brown smoothhound shark, Mustelus henlei . Mar Biol 161, 797–804 (2014). https://doi.org/10.1007/s00227-013-2378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2378-2

Keywords

Navigation