Skip to main content
Log in

Hypoxia-driven selective degradation of cellular proteins in jumbo squids during diel migration to the oxygen minimum zones

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The jumbo squid, Dosidicus gigas, is an oceanic top predator in the eastern tropical Pacific that undergoes diel vertical migrations into mesopelagic oxygen minimum zones (OMZs). Besides glycogen breakdown, the pathways of the squid’s metabolic (suppression) strategy are poorly understood. Here, juvenile D. gigas were exposed to oxygen levels found in the OMZ off Gulf of California (1 % O2, 1 kPa at 10 °C) with the aim to identify, via proteomic tools, eventual anaerobic protein degradation as potential energy source at such depths. Under hypoxia, total protein concentration decreased nonsignificantly from 79.2 ± 12.4 mg g−1 wet mass to 74.7 ± 11.7 mg g−1 wet mass (p > 0.05). Yet, there was a significant decrease in heat-shock protein (Hsp) 90 and α-actinin contents (p < 0.05). The lower α-actinin concentration at late hypoxia was probably related to decreased protection of the Hsp90 chaperon machinery resulting in increased ubiquitination (p < 0.05) and subsequent degradation. Thus, the present findings indicate that D. gigas might degrade, at least under progressing hypoxia, specific mantle proteins anaerobically to increase/maintain anaerobic ATP production and extend hypoxia exposure time. Moreover, the ubiquitin–proteasome system seems to play an important role in hypoxia tolerance, but further investigations are necessary to discover its full potential and pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almgren CM, Olson LE (1999) Moderate hypoxia increases heat shock protein 90 expression in excised rat aorta. J Vasc Res 36:363–371

    Article  CAS  Google Scholar 

  • Antonopoulou E, Kentepozicou E, Feidantsis K, Roufidou C, Despoti S, Chatzifotis S (2013) Starvation and re-feeding affect Hsp expression, MAPK activation and antioxidant enzymes activity of European Sea Bass (Dicentrarchus labrax). Comp Biochem Physiol A 165:79–88

    Article  CAS  Google Scholar 

  • Antonsson C, Whitelaw ML, McGuire J, Gustafsson J-A, Poellinger L (1995) Distinct roles of the molecular chaperone Hsp90 in modulating dioxin receptor function via the basic helix-loop-helix and PAS domains. Mol Cell Biol 15:756–765

    CAS  Google Scholar 

  • Attaix D, Taillandier D (1998) The critical role of the ubiquitin–proteasome pathway in muscle wasting in comparison to lysosomal and Ca2+-dependent systems. Adv Mol Cell Biol 27:235–266

    Article  CAS  Google Scholar 

  • Attaix D, Combaret L, Pouch M-N, Taillandier D (2001) Regulation of proteolysis. Curr Opin Clin Nutr Metab Care 4:45–49

    Article  CAS  Google Scholar 

  • Bailey JR, Driedzic WR (1996) Decreased total ventricular and mitochondrial protein synthesis during extended anoxia in turtle heart. Am J Physiol 271:R1660–R1667

    CAS  Google Scholar 

  • Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE (1996) The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin–proteasome pathway. J Clin Invest 97:1447–1453

    Article  CAS  Google Scholar 

  • Bickler PE, Buck LT (2007) Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol 69:145–170

    Article  CAS  Google Scholar 

  • Boone AN, Vijayan MM (2002) Constitutive heat shock protein 70 (HSC70) expression in rainbow trout hepatocytes: effect of heat shock and heavy metal exposure. Comp Biochem Physiol C: Toxicol Pharmacol 132:223–233

    Google Scholar 

  • Boucher-Rodoni R, Mangold K (1985) Ammonia excretion during feeding and starvation in Octopus vulgaris. Mar Biol 86:193–197

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bruick RK (2013) Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Devel 17:2614–2623

    Article  Google Scholar 

  • Buchner J (1999) Hsp90 & Co—a holding for folding. Trends Biochem Sci 24:136–141

    Article  CAS  Google Scholar 

  • Caplan AJ (1999) Hsp 90’s unfold: new insights from structural and functional studies. Trends Cell Biol 9:262–268

    Article  CAS  Google Scholar 

  • Cheng SH, So CH, Chan PK, Cheng CW, Wu RS (2003) Cloning of the HSP70 gene in barnacle larvae and its expression under hypoxic conditions. Mar Pollut Bull 46:665–671

    Article  CAS  Google Scholar 

  • Childress JJ, Mickel TJ (1980) A motion compensated shipboard precision balance system. Deep Sea Res 27:965–970

    Article  Google Scholar 

  • Chuang K-H, Ho S-H, Song Y-L (2007) Cloning and expression analysis of heat shock cognate 70 gene promoter in tiger shrimp (Penaeus monodon). Gene 405:10–18

    Article  CAS  Google Scholar 

  • Currie S, Moyes CD, Tufts B (2000) The effects of heat shock and acclimation temperature on Hsp 70 and Hsp30 mRNA expression in rainbow trout: in vivo and in vitro comparisons. J Fish Biol 56:398–408

    Article  CAS  Google Scholar 

  • De Zwaan A, Putzer V (1985) Metabolic adaptations of intertidal invertebrates to environmental hypoxia (a comparison of environmental anoxia to exercise anoxia). Symp Soc Exp Biol 39:33–62

    Google Scholar 

  • Deane EE, Woo NYS (2003) Ontogeny of thyroid hormones, cortisol, Hsp70 and Hsp90 during silver sea bream larval development. Life Sci 72:805–818

    Article  CAS  Google Scholar 

  • Deng DF, Wang CF, Lee SH, Bai SC, Hung SSO (2009) Feeding rates affect heat shock protein levels in liver of larval white sturgeon (Acipenser transmontanus). Aquaculture 287:223–226

    Article  CAS  Google Scholar 

  • Dietz T (1994) Acclimation of the threshold induction temperatures for Hsp 70 and Hsp 90 in the fish Gyllicthys mirabilis. J Exp Biol 188:333–338

    CAS  Google Scholar 

  • Douglas W, Friede A, Pickwell GV (1976) Fishes in oxygen minimum zones: blood oxygenation characteristics. Science 191:957–959

    Article  CAS  Google Scholar 

  • Falsone SF, Gesslbauer B, Tirk F, Piccinini A-M, Kungl AJ (2005) A proteomic snapshot of the human heat shock protein 90 interactome. FEBS Lett 579:6350–6354

    Article  CAS  Google Scholar 

  • Fang C-H, Wang JJ, Hobler S, Li BG, Fischer JE, Hasselgren P-O (1998) Proteasome blockers inhibit protein breakdown in skeletal muscle after burn injury in rats. Clin Sci 95:225–233

    Article  CAS  Google Scholar 

  • Feidantsis K, Pörtner HO, Lazou A, Kostoglou B, Michaelidis B (2009) Metabolic and molecular stress responses of the gilthead sea bream Sparus aurata during long term exposure to increasing temperatures. Mar Biol 156:797–809

    Article  CAS  Google Scholar 

  • Feidantsis K, Antonopoulou E, Lazou A, Pörtner HO, Michaelidis B (2012) Seasonal variations of cellular stress response of the gilthead sea bream (Sparus aurata). J Comp Physiol B doi:10.1007/s00360-012-0735-y

    Google Scholar 

  • Francis T, Sukumaran N (1992) Influence of salinity on energy utilization of Etroplus suratensis (Bloch). J Aquacult Trop 7:21–26

    Google Scholar 

  • Fraser KPP, Houlihan DF, Lutz PL, Leone-Kabler S, Manuel L, Brechin JG (2001) Complete suppression of protein synthesis during anoxia with no post-anoxia protein synthesis debt in the red-eared slider turtle Trachemys scripta elegans. J Exp Biol 204:4353–4360

    CAS  Google Scholar 

  • Gerber HP, Condorelli F, Park J (1997) Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 272:23659–23667

    Article  CAS  Google Scholar 

  • Gilly WF, Markaida U, Baxter CH, Block BA, Boustany A, Zeidberg L, Reisenbichler K, Robison B, Baxxino G, Salinas C (2006) Vertical and horizontal migrations by the jumbo squid Dosidicus gigas revealed by electronic tagging. Mar Ecol Prog Ser 324:1–17

    Article  Google Scholar 

  • Grieshaber MK, Hardewig I, Kreutze U, Pörtner HO (1994) Physiological and metabolic responses to hypoxia in invertebrates. Rev Physiol Bioch P 125:43–147

    Article  CAS  Google Scholar 

  • Grigoriou P, Richardson CA (2009) Effect of body mass, temperature and food deprivation on oxygen consumption rate of common cuttlefish. Sepia officinalis Mar Biol 156:2437–2481

    Google Scholar 

  • Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev 74:1–40

    Article  CAS  Google Scholar 

  • Guppy M, Fuery CJ, Flanigan JE (1994) Biochemical principles of metabolic depression. Comp Biochem Physiol B 109:175–189

    CAS  Google Scholar 

  • Han D, Huang SSY, Wang W-F, Deng D-F, Hung SSO (2012) Starvation reduces the heat shock protein responses in white sturgeon larvae. Environ Biol Fish 93:333–342

    Article  Google Scholar 

  • Hawkins AJS (1991) Protein turnover: a functional appraisal. Funct Ecol 5:222–233

    Article  Google Scholar 

  • Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat shock proteins. Annu Rev Biochem 62:349–384

    Article  CAS  Google Scholar 

  • Hochachka PW, Mommsen TP (1983) Protons and anaerobiosis. Science 219:1391–1397

    Article  CAS  Google Scholar 

  • Hochachka PW, Somero GN (1973) Strategies of biochemical adaptation. Saunders Company, Philadelphia, WB

    Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanisms and process in physiological evolution. Oxford University Press, Oxford

    Google Scholar 

  • Höhfeld J, Cyr DM, Patterson C (2001) From cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2:885–890

    Article  Google Scholar 

  • Houlihan DF, Kelly K, Boyle PR (1998) Correlates of growth and feeding in laboratory-maintained Eledone cirrhosa (Cepalopoda: Octopoda). J Mar Biol Assoc UK 78:919–932

    Article  Google Scholar 

  • Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin–proteasome pathway. Proc Natl Acad Sci 95:7987–7992

    Article  CAS  Google Scholar 

  • Isaacs JS, Jung Y-J, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM (2002) Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J Biol Chem 277:29936–29944

    Article  CAS  Google Scholar 

  • Kallio PJ, Wilson WJ, O’Brien S, Makino Y, Tanaka H, Poellinger L (1998) Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin–proteasome pathway. J Biol Chem 274:6519–6525

    Article  Google Scholar 

  • Kee AJ, Combaret L, Tilignac T, Souweine B, Aurousseau E, Dalle M, Taillandier D, Attaix D (2003) Ubiquitin–proteasome-dependent muscle proteolysis responds slowly to insulin release and refeeding in starved rats. J Physiol 546:765–776

    Article  CAS  Google Scholar 

  • Lamarre SG, Ditlecadet D, McKenzie DJ, Bonnaud L, Driedzic WR (2012) Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis. Am J Physiol Regul Integr Comp Physiol 303:R427–R437

    Article  CAS  Google Scholar 

  • Land SC, Buck LT, Hochachka PW (1993) Response of protein synthesis to anoxia and recovery in anoxia-tolerant hepatocytes. Am J Physiol 265:R41–R48

    CAS  Google Scholar 

  • McGuire J, Whitelaw ML, Pongratz I, Gustafsson J-A, Poellinger L (1994) A cellular factor stimulates ligand-dependent release of Hsp90 from the basic helix-loop-helix dioxin receptor. Mol Cell Biol 14:2438–2446

    Article  CAS  Google Scholar 

  • Medina R, Wing SS, Goldberg AL (1995) Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy. Biochem J 307:631–637

    CAS  Google Scholar 

  • Melzner F, Mark FC, Pörtner HO (2007) Role of blood-oxygen transport in thermal tolerance of the cuttlefish, Sepia officinalis. Integr Comp Biol 47:645–655

    Article  CAS  Google Scholar 

  • Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C (1999) Hypoxia-induced activation of HIF-1: role of HIF-1α-Hsp90 interaction. FEBS Lett 460:251–256

    Article  CAS  Google Scholar 

  • Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting—the role of the ubiquitin–proteasome pathway. N Engl J Med 335:1897–1905

    Article  CAS  Google Scholar 

  • Mosser DD, Theodorakis NG, Morimoto RI (1988) Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol 8:4736–4744

    CAS  Google Scholar 

  • O’Dor RK, Webber DM (1986) The constraints on cephalopods: why squid aren’t fish. Can J Zool 64:1591–1605

    Article  Google Scholar 

  • O’Dor RK, Mangold K, Wells MJ, Wells J, Boucher-Rodon R (1984) Nutrient absorption, storage and remobilization in Octopus vulgaris. Mar Behav Physiol 11:239–258

    Article  Google Scholar 

  • Otey CA, Carpen O (2004) Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton 58:104–111

    Article  CAS  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  Google Scholar 

  • Pörtner HO (1994) Coordination of metabolism, acid-base regulation and haemocyanin function in cephalopods. Mar Fresh Behav Physiol 25:131–148

    Article  Google Scholar 

  • Pörtner HO (2002) Environmental and functional limits to muscular exercise and body size in marine invertebrates athletes. Comp Biochem Physiol A 133:303–321

    Article  Google Scholar 

  • Pörtner HO, Finke E, Lee PG (1996) Metabolic and energy correlates of intracellular pH in progressive fatigue of squid (L. brevis) mantle muscle. Am J Physiol 271:R1403–R1414

    Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the Hsp90/Hsp70-based chaperone machinery. Proc Soc Exp Biol Med 217:420–434

    Article  Google Scholar 

  • Pratt WB, Morishima Y, Peng H-M, Osawa Y (2010) Proposal for a role of the Hsp90/Hsp70-based chaperon machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med 235:278–289

    Article  CAS  Google Scholar 

  • Price SR, Bailey JL, Wang X, Jurkovitz C, England BK, Ding X, Phillips LS, Mitch WE (1996) Muscle wasting in insulinopenic rats, results from activation of the ATP-dependent, ubiquitin–proteasome proteolytic pathway by a mechanism including gene transcription. J Clin Invest 98:1703–1708

    Article  CAS  Google Scholar 

  • Pruski AM, Fiala-Medioni A, Fisher CR, Colomines JC (2000) Composition of free amino acids and related compounds in invertebrates with symbiotic bacteria at hydrocarbon seeps in the Gulf of Mexico. Mar Biol 136:411–420

    Article  CAS  Google Scholar 

  • Randall DJ, Wright PA (1987) Ammonia distribution and excretion in fish. Fish Physiol Biochem 3:107–120

    Article  CAS  Google Scholar 

  • Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggests future physiological impairment in a top oceanic predator. Proc Natl Acad Sci 105:20776–20780. doi:10.1073/pnas.0806886105

    Article  CAS  Google Scholar 

  • Rosa R, Seibel BA (2010) Metabolic physiology of the Humboldt squid, Dosidicus gigas: implications for vertical migration in a pronounced oxygen minimum zone. Prog Oceanogr 86:72–80

    Article  Google Scholar 

  • Rosa R, Costa PR, Nunes ML (2004) Effect of sexual maturation in the tissue biochemical composition of Octopus vulgaris and O. defilippi (Mollusca: Cephalopoda). Mar Biol 145(3):563–574

    Article  CAS  Google Scholar 

  • Rosa R, Costa PR, Bandarra N, Nunes ML (2005a) Changes in tissue biochemical composition and energy reserves associated with sexual maturation in the ommastrephid squids Illex coindetii and Todaropsis eblanae. Biol Bull 208(2):100–113

    Article  CAS  Google Scholar 

  • Rosa R, Costa PR, Bandarra N, Nunes ML (2005b) Changes in tissue biochemical composition and energy reserves associated with sexual maturation in the ommastrephid squids Illex coindetii and Todaropsis eblanae. Biol Bull 208(2):100–113

    Article  CAS  Google Scholar 

  • Schmidt-Nielsen K (1975) Animal physiology: adaptation and the environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Seibel BA (2011) Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J Exp Biol 214:326–336

    Article  CAS  Google Scholar 

  • Seibel BA (2013) The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: blood-oxygen binding. Deep Sea Res Part II. doi:10.1016/j.dsr2.2012.10.003

    Google Scholar 

  • Shulman GE, Abolmasova GI, Muravskaya ZA (1993) Protein utilization in energy metabolism of hydrobionts. Usp Sovrem Biol 113:576–586

    CAS  Google Scholar 

  • Shulman GE, Chesalin MV, Abolmasova GI, Yuneva TV, Kideys A (2002) Metabolic strategy in pelagic squid of genus Sthenoteuthis (Ommastrephidae) as the basis of high abundance and productivity: an overview of the Soviet investigations. Bull Mar Sci 71:815–836

    Google Scholar 

  • Sjöblom B, Salmazo A, Djinovic-Carugo K (2008) α-Actinin structure and regulation. Cell Mol Life Sci 65:2688–2701

    Article  Google Scholar 

  • Smith DF (1993) Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol Endocrinol 7:1418–1429

    CAS  Google Scholar 

  • Smith RW, Houlihan DF, Nilsson GE, Brechin JG (1996) Tissue-specific changes in protein synthesis rates in vivo during anoxia in crucian carp. Am J Physiol 271:R897–R904

    CAS  Google Scholar 

  • Spees JL, Chang SA, Snyder MJ, Chang ES (2002) Osmotic induction of stress-responsive gene expression in the lobster Homarus americanus. Biol Bull 203:331–337

    Article  CAS  Google Scholar 

  • Squire JM (1997) Architecture and function in the muscle sarcomere. Curr Opin Struct Biol 7:247–257

    Article  CAS  Google Scholar 

  • Storey KB, Storey JM (1983) Carbohydrate metabolism in cephalopod molluscs. In: Hochachka PW (ed) The mollusca. Academic Press, London, pp 92–137

    Google Scholar 

  • Stramma L, Johnson GC, Sprintall J, Mohrholz V (2008) Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–658

    Article  CAS  Google Scholar 

  • Sukumaran N, Kutty MN (1977) Oxygen consumption and ammonia excretion in the catfish Mystus armatus, with special reference to swimming speed and ambient oxygen. Proc Indian Natl Sci Acad B 86:195–206

    Google Scholar 

  • Svetlichny LS, Gubareva ES, Arashkevich EG (1998) Physiological and behavioural response to hypoxia in active and diapausing stage V copepodites of Calanus euxinus. Adv Limnol Arch Hydrobiol Spec Issue 52:507–519

    Google Scholar 

  • Trübenbach K, Teixeira T, Diniz M, Rosa R (2012) Hypoxia tolerance and antioxidant defense system of jumbo squids in oxygen minimum zones. Deep-Sea Res Part II. doi:10.1016/j.dsr2.2012.10.001

    Google Scholar 

  • Trübenbach K, Pegado RM, Seibel BA, Rosa R (2013) Ventilation rates and activity levels of jumbo squids under metabolic suppression in the oxygen minimum zones. J Exp Biol 216:359–368

    Article  Google Scholar 

  • Vijayan MM, Aluru N, Maule AG, Jørgensen EV (2006) Fasting augments PCB impact on liver metabolism in anadromous arctic char. Toxicol Sci 91:431–439

    Article  CAS  Google Scholar 

  • Whitelaw M, Gottlicher M, Gustafsson J-A, Poellinger L (1993) Definition of a novel ligand binding domain of a nuclear bHLH receptor: co-localization of ligand and Hsp90 binding activities within the regulable inactivation domain of the dioxin receptor. EMBO J 12:4169–4179

    CAS  Google Scholar 

  • Wing SS, Haas AL, Goldberg AL (1995) Increase in ubiquitin–protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation. Biochem J 307:639–645

    CAS  Google Scholar 

  • Yamuna A, Kabila V, Geraldine P (2000) Expression of heat shock protein 70 in freshwater prawn Macrobrachium malcolmsonii (H. Milne Edwards) following exposure to Hg and Cu. Indian J Exp Biol 38:921–925

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Brad Seibel for making the participation in the research cruise aboard RV New Horizon possible, and Unai Markaida for his assistance in collecting the specimens. We also thank IPATIMUP (Porto, Portugal) for help processing our samples. This work was supported by research grants to R.R. from the Portugal–US Research Networks Program (FLAD/US National Science Foundation Research Grant) and The Portuguese Foundation for Science and Technology (FCT, Ciência 2007 Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Trübenbach.

Additional information

Communicated by H.-O. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trübenbach, K., da Costa, G., Ribeiro-Silva, C. et al. Hypoxia-driven selective degradation of cellular proteins in jumbo squids during diel migration to the oxygen minimum zones. Mar Biol 161, 575–584 (2014). https://doi.org/10.1007/s00227-013-2360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2360-z

Keywords

Navigation