Skip to main content
Log in

Experimental evidence for internal predation in microzooplankton communities

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The fate of microzooplankton production, whether it is channeled to mesozooplankton or recycled within the microbial food web, has major implications for the oceanic carbon cycle. The aim of this study was to estimate internal predation within naturally occurring microzooplankton communities. A dilution series based on the Landry and Hasset technique was created by mixing 200-μm-screened water (used as whole water) with 5-μm-screened seawater due to the dominance of pico- and small nanoplankton at our study site. This modification of the original technique allows for gradual reduction in microzooplankton abundance and thus internal predation while maintaining sufficient phytoplankton prey levels for microzooplankton growth in diluted treatments. Microzooplankton growth and mortality rates were calculated based on the changes in abundance during 24-h incubation. In the diluted treatments, microzooplankton growth rates were significantly higher (1.21 ± 0.20 day−1 for ciliates and 0.88 ± 0.05 day−1 for heterotrophic dinoflagellates) compared to those in whole seawater where microzooplankton abundance remained unchanged or even declined over time. Approximately 79 % of microzooplankton production was consumed within the microzooplankton, with aloricate ciliates being the most vulnerable to predation. These findings support the assumption that trophic interactions between microzooplankton can be an important factor controlling their production and, thus, energy transfer in picoplankton-dominated pelagic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263. doi:10.3354/meps010257

    Article  Google Scholar 

  • Batten SD, Fileman ES, Halvorsen E (2001) The contribution of microzooplankton to the diet of mesozooplankton in an upwelling filament off the north west coast of Spain. Prog Oceanogr 51:385–398

    Article  Google Scholar 

  • Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57

    Article  CAS  Google Scholar 

  • Calbet A, Saiz E (2005) The ciliate–copepod link in marine ecosystems. Aquat Microb Ecol 38:157–167

    Article  Google Scholar 

  • Calbet A, Trepat I, Almeda R, Saló V, Saiz E, Movilla JI, Alcaraz M, Yebra L, Simó R (2008) Impact of micro- and nanograzers on phytoplankton assessed by standard and size-fractionated dilution grazing experiments. Aquat Microb Ecol 50:145–156. doi:10.3354/ame01171

    Article  Google Scholar 

  • Calbet A, Saiz E, Almeda R, Movilla JI, Alcaraz M (2011) Low microzooplankton grazing rates in the Arctic Ocean during a Phaeocystis pouchetii bloom (Summer 2007): fact or artifact of the dilution technique? J Plankton Res 33:687–701. doi:10.1093/plankt/fbq142

    Article  CAS  Google Scholar 

  • Calbet A, Martinez RA, Isari S, Zervoudaki S, Nejstgaard JC, Pitta P, Sazhin AF, Sousoni D, Gomes A, Berger SA, Tsagaraki TM, Ptacnik R (2012) Effects of light availability on mixotrophy and microzooplankton grazing in an oligotrophic plankton food web: evidences from a mesocosm study in Eastern Mediterranean waters. J Exp Mar Biol Ecol 424:66–77. doi:10.1016/j.jembe.2012.05.005

    Article  Google Scholar 

  • Campbell RG, Sherr EB, Ashjian CJ, Plourde S, Sherr BF, Hill V, Stockwell DA (2009) Mesozooplankton prey preference and grazing impact in the western Arctic Ocean. Deep Sea Res Part II 56:1274–1289. doi:10.1016/j.dsr2.2008.10.027

    Article  Google Scholar 

  • Carrias JF, Thouvenot A, Amblard C, Sime-Ngando T (2001) Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin, France. Aquat Microb Ecol 24:163–174. doi:10.3354/ame024163

    Article  Google Scholar 

  • Dolan JR, Gallegos CL, Moigis A (2000) Dilution effects on microzooplankton in dilution grazing experiments. Mar Ecol Prog Ser 200:127–139. doi:10.3354/meps200127

    Article  CAS  Google Scholar 

  • First MR, Lavrentyev PJ, Jochem FJ (2007) Patterns of microzooplankton growth in dilution experiments across a trophic gradient: implications for herbivory studies. Mar Biol 151:1929–1940. doi:10.1007/s00227-007-0629-9

    Article  Google Scholar 

  • First MR, Miller HL III, Lavrentyev PJ, Pinckney JL, Burd AB (2009) Effects of microzooplankton growth and trophic interactions on herbivory in coastal and offshore environments. Aquat Microb Ecol 54:255–267. doi:10.3354/ame01271

    Article  Google Scholar 

  • Flynn KJ, Stoecker DK, Mitra A, Raven JA, Glibert PM, Hansen PJ, Graneli E, Burkholder JM (2013) Misuse of the phytoplankton zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res 35:3–11. doi:10.1093/plankt/fbs062

    Article  Google Scholar 

  • Fonda Umani S, Beran A (2003) Seasonal variations in the dynamics of microbial plankton communities: first estimates from experiments in the Gulf of Trieste, Northern Adriatic Sea. Mar Ecol Prog Ser 247:1–16

    Article  Google Scholar 

  • Franze G, Lavrentyev PJ (In Prep) Microzooplankton growth rates examined across a temperature gradient in the Barents Sea

  • Gaul W, Antia AN (2001) Taxon-specific growth and selective microzooplankton grazing of phytoplankton in the Northeast Atlantic. J Mar Syst 30:241–261

    Article  Google Scholar 

  • Gifford DJ (1985) Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Mar Ecol Prog Ser 23:257–267. doi:10.3354/Meps023257

    Article  Google Scholar 

  • Gifford DJ (1991) The protozoan–metazoan trophic link in pelagic ecosystems. J Protozool 38:81–86. doi:10.1111/j.1550-7408.1991.tb04806.x

    Article  Google Scholar 

  • Gurung TB, Nakanishi M, Urabe J (2000) Seasonal and vertical difference in negative and positive effects of grazers on heterotrophic bacteria in Lake Biwa. Limnol Oceanogr 45:1689–1696

    Article  Google Scholar 

  • Herfort L, Peterson TD, Campbell V, Futrell S, Zuber P (2011) Myrionecta rubra (Mesodinium rubrum) bloom initiation in the Columbia River estuary. Estuar Coast Shelf Sci 95:440–446. doi:10.1016/j.ecss.2011.10.015

    Article  Google Scholar 

  • Holm-Hansen O, Lorenzen C, Holmes R, Strickland J (1965) Fluorimetric determination of chlorophyll. ICES J Mar Sci 30:3–15

    Article  CAS  Google Scholar 

  • Jeong HJ (1999) The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J Eukaryot Microbiol 46:390–396. doi:10.1111/j.1550-7408.1999.tb04618.x

    Article  Google Scholar 

  • Jeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45:65–91. doi:10.1007/s12601-010-0007-2

    Article  CAS  Google Scholar 

  • Johnson MD (2011) Acquired phototrophy in ciliates: a review of cellular interactions and structural adaptations. J Eukaryot Microbiol 58:185–195. doi:10.1111/j.1550-7408.2011.00545.x

    Article  Google Scholar 

  • Landry MR, Hassett RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67:283–288. doi:10.1007/bf00397668

    Article  Google Scholar 

  • Levinsen H, Nielsen TG, Hansen BW (1999) Plankton community structure and carbon cycling on the western coast of Greenland during the stratified summer situation. II. Heterotrophic dinoflagellates and ciliates. Aquat Microb Ecol 16:217–232

    Article  Google Scholar 

  • Mazzocchi MG, Ribera D’alcalà M (1995) Recurrent patterns in zooplankton structure and succession in a variable coastal environment. ICES J Mar Sci 52:679–691. doi:10.1016/1054-3139(95)80081-6

    Article  Google Scholar 

  • Menden-Deuer S, Fredrickson K (2010) Structure-dependent, protistan grazing and its implication for the formation, maintenance and decline of plankton patches. Mar Ecol Prog Ser 420:57–71. doi:10.3354/meps08855

    Article  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579

    Article  CAS  Google Scholar 

  • Modigh M (2001) Seasonal variations of photosynthetic ciliates at a Mediterranean coastal site. Aquat Microb Ecol 23:163–175. doi:10.3354/ame023163

    Article  Google Scholar 

  • Modigh M, Castaldo S (2002) Variability and persistence in tintinnid assemblages at a Mediterranean coastal site. Aquat Microb Ecol 28:299–311. doi:10.3354/ame028299

    Article  Google Scholar 

  • Modigh M, Franze G (2009) Changes in phytoplankton and microzooplankton populations during grazing experiments at a Mediterranean coastal site. J Plankton Res 31:853–864. doi:10.1093/plankt/fbp035

    Article  CAS  Google Scholar 

  • Montagnes DJS (1996) Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar Ecol Prog Ser 130:241–254

    Article  Google Scholar 

  • Nielsen TG, Kiørboe T (1994) Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnol Oceanogr 39:508–519

    Article  Google Scholar 

  • Paffenhofer GA (1998) Heterotrophic protozoa and small metazoa: feeding rates and prey–consumer interactions. J Plankton Res 20:121–133. doi:10.1093/plankt/20.1.121

    Article  Google Scholar 

  • Paffenhöfer G-A, Sherr BF, Sherr EB (2007) From small scales to the big picture: persistence mechanisms of planktonic grazers in the oligotrophic ocean. Mar Ecol 28:243–253. doi:10.1111/j.1439-0485.2007.00162.x

    Article  Google Scholar 

  • Pérez MT, Dolan JR, Fukai E (1997) Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepods. Mar Ecol Prog Ser 155:89–101. doi:10.3354/meps155089

    Article  Google Scholar 

  • Pomeroy LR (1974) Oceans food web, a changing paradigm. Bioscience 24:499–504. doi:10.2307/1296885

    Article  Google Scholar 

  • Pomeroy LR, Williams PJI, Azam F, Hobbie JE (2007) The microbial loop. Oceanography 20:28–33

    Article  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon:volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Article  Google Scholar 

  • Reckermann M, Veldhuis MJW (1997) Trophic interactions between picophytoplankton and micro- and nanozooplankton in the western Arabian Sea during the NE monsoon 1993. Aquat Microb Ecol 12:263–273. doi:10.3354/Ame012263

    Article  Google Scholar 

  • Ribera d’Alcalà M, Modigh M, Moretti M, Saggiomo V, Scardi M, Spezie G, Zingone A (1989) Una storia infinita. Eutrofizzazione nella baia di Napoli. Oebalia 15:491–501

    Google Scholar 

  • Ribera D’Alcalà M, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiomo V, Sarno D, Zingone A (2004) Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci Mar 68:65–83

    Google Scholar 

  • Rose JM, Caron DA (2007) Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr 52:886–895

    Article  Google Scholar 

  • Saiz E, Calbet A (2011) Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666:181–196. doi:10.1007/s10750-010-0421-6

    Article  CAS  Google Scholar 

  • Sanders R (2011) Alternative nutritional strategies in protists: symposium introduction and a review of freshwater protists that combine photosynthesis and heterotrophy. J Eukaryot Microbiol 58:181–184

    Article  Google Scholar 

  • Seuthe L, Rokkan Iversen K, Narcy F (2011) Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biol 34:751–766. doi:10.1007/s00300-010-0930-9

    Article  Google Scholar 

  • Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81:293–308

    Article  CAS  Google Scholar 

  • Sherr EB, Sherr BF (2007) Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar Ecol Prog Ser 352:187–197. doi:10.3354/meps07161

    Article  Google Scholar 

  • Sherr BF, Sherr EB, Andrew TL, Fallon RD, Newell SY (1986) Trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine water analyzed with selective metabolic-inhibitors. Mar Ecol Prog Ser 32:169–179. doi:10.3354/Meps032169

    Article  CAS  Google Scholar 

  • Smalley GW, Coats DW, Adam EJ (1999) A new method using fluorescent microspheres to determine grazing on ciliates by the mixotrophic dinoflagellate Ceratium furca. Aquat Microb Ecol 17:167–179. doi:10.3354/ame017167

    Article  Google Scholar 

  • Stoecker DK (1999) Mixotrophy among dinoflagellates. J Eukaryot Microbiol 46:397–401. doi:10.1111/j.1550-7408.1999.tb04619.x

    Article  Google Scholar 

  • Stoecker D, Evans G (1985) Effects of protozoan herbivory and carnivory in a microplankton food web. Mar Ecol Prog Ser 25:159–167

    Article  Google Scholar 

  • Stoecker D, Davis L, Provan A (1983) Growth of Favella sp. (Ciliata: Tintinnina) and other microzooplankters in cages incubated in situ and comparison to growth in vitro. Mar Biol 75:293–302

    Article  Google Scholar 

  • Strom SL (2001) Light-aided digestion, grazing and growth in herbivorous protists. Aquat Microb Ecol 23:253–261. doi:10.3354/ame023253

    Article  Google Scholar 

  • Strom SL, Macri EL, Olson MB (2007) Microzooplankton grazing in the coastal Gulf of Alaska: variations in top–down control of phytoplankton. Limnol Oceanogr 52:1480–1494

    Article  Google Scholar 

  • Vargas CA, Martinez RA (2009) Grazing impact of natural populations of ciliates and dinoflagellates in a river-influenced continental shelf. Aquat Microb Ecol 56:93–108. doi:10.3354/ame01319

    Article  Google Scholar 

  • Verity PG, Robertson CY, Tronzo CR, Andrews MG, Nelson JR, Sieracki ME (1992) Relationships between cell–volume and the carbon and nitrogen-content of marine photosynthetic nanoplankton. Limnol Oceanogr 37:1434–1446

    Article  CAS  Google Scholar 

  • Verity PG, Stoecker DK, Sieracki ME, Nelson JR (1993) Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47°N, 18°W. Deep Sea Res Part I 40:1793–1814. doi:10.1016/0967-0637(93)90033-y

    Article  Google Scholar 

  • Yang EJ, Hyun JH, Kim D, Park J, Mang SH, Shin HC, Lee S (2012) Mesoscale distribution of protozooplankton communities and their herbivory in the western Scotia Sea of the Southern Ocean during the austral spring. J Exp Mar Biol Ecol 428:5–15. doi:10.1016/j.jembe.2012.05.018

    Article  Google Scholar 

  • Yih W, Kim HS, Jeong HA, Myung G, Kim YG (2004) Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rubrum. Aquat Microb Ecol 36:165–170. doi:10.3354/ame036165

    Article  Google Scholar 

  • Zingone A, Montresor M, Marino D (1990) Summer phytoplankton physiognomy in coastal waters of the Gulf of Naples. Mar Ecol 11:157–172. doi:10.1111/j.1439-0485.1990.tb00236.x

    Article  Google Scholar 

  • Zingone A, Dubroca L, Iudicone D, Margiotta F, Corato F, d’Alcala MR, Saggiomo V, Sarno D (2010) Coastal phytoplankton do not rest in winter. Estuar Coast 33:342–361. doi:10.1007/s12237-009-9157-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Vincenzo Saggiomo and to all our colleagues of the Management and Ecology of Coastal Area Department of the Zoological Station Anton Dohrn of Naples, Italy, for the scientific and technical support provided during the whole period of our research. The authors also gratefully acknowledge the effort of the crew of the RV “Vettoria.” Thanks are due to Drs. Peter Lavrentyev and Francisco Moore of the Biology Department of the University of Akron, OH, USA, for their very helpful criticism of the manuscript. We would also like to thank the unknown referees for their comments, which contributed to improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayantonia Franzé.

Additional information

Communicated by U. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzé, G., Modigh, M. Experimental evidence for internal predation in microzooplankton communities. Mar Biol 160, 3103–3112 (2013). https://doi.org/10.1007/s00227-013-2298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2298-1

Keywords

Navigation