Skip to main content
Log in

Small-scale spatial and temporal genetic structure of the Atlantic sea scallop (Placopecten magellanicus) in the inshore Gulf of Maine revealed using AFLPs

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Despite long planktonic durations, many species of broadcast spawning invertebrates exhibit genetic structure at small spatial and temporal scales. Amplified fragment length polymorphisms were used to assess genetic variation in the sea scallop, Placopecten magellanicus, among four inshore and one offshore location in the Gulf of Maine and temporal genetic variation among age classes of sea scallops at one site. Our results indicated that genetic structure for P. magellanicus exists on smaller spatial scales (tens to hundreds of kilometers) than expected given the 40-day planktonic larval period. In addition, genetic differences among age classes may be influenced by inter-annual differences in larval supply or reproductive success. Future genetic studies should sample multiple age classes prior to comparison among locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef populations in a marine reserve. Science 316:742–744

    Article  CAS  Google Scholar 

  • Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914

    Article  CAS  Google Scholar 

  • Bonin A, Ehrich E, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758

    Article  CAS  Google Scholar 

  • Brooks DA (2004) Modeling tidal circulation and exchange in Cobscook Bay, Maine Northeast Nat 11(S2): 23–50

    Google Scholar 

  • Broquet T, Viard F, Yearsley JM (2013) Genetic drift and collective dispersal can result in chaotic genetic patchiness. Evolution 67:1660–1675

    Article  Google Scholar 

  • Burford MO, Larson RJ (2007) Genetic heterogeneity in a single year-class from a panmictic population of adult blue rock fish (Sebastes mystinus). Mar Biol 151:451–465

    Article  Google Scholar 

  • Caddy JF (1988) A perspective on the population dynamics and assessment of scallop fisheries, with special reference to the sea scallop Placopecten magellanicus Gmelin. In: Caddy JF (ed) Marine invertebrate fisheries: their assessment and management. Wiley, New York pp 559–574

  • Campbell D, Bernatchez L (2004) Genomic scan using AFLP as a means to assess the role of directional selection in the divergence of sympatric whitefish genotypes. Mol Biol Evol 21:945–956

    Article  CAS  Google Scholar 

  • Christie MR, Johnson DW, Stallings CD, Hixon MA (2010) Self-recruitment and sweepstakes reproduction amid extensive gene flow in a coral-reef fish. Mol Ecol 19:1042–1057

    Article  Google Scholar 

  • Cowen RK, Lwiza KMM, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine populations: open or closed? Science 287:857–859

    Article  CAS  Google Scholar 

  • Crenshaw MA (1980) Biomineralization mechanisms. In: Carter JG (ed) Skeletal biomineralization: Patterns, processes, and evolutionary trends vol 1. Van Nostrand Reinhold, New York, pp 1–9

    Google Scholar 

  • Culliney JL (1974) Larval development of the giant scallop Placopecten magellanicus (Gmelin). Biol Bull 147:321–332

    Article  CAS  Google Scholar 

  • Dickie LM (1955) Fluctuations in abundance of the giant scallop, Placopecten magellanicus (Gmelin), in the digby area of the Bay of Fundy. J Fish Res Bd Canada 12:797–856

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  Google Scholar 

  • Flowers JM, Schroeter SC, Burton RS (2002) The recruitment sweepstakes has many winners: genetic evidence from the sea urchin Strongylocentrotus purpuratus. Evolution 56:1445–1453

    CAS  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  Google Scholar 

  • Gruenthal KM, Acheson LK, Burton RS (2007) Genetic structure of natural populations of California red abalone (Haliotis rufescens) using multiple genetic markers. Mar Biol 152:1237–1248

    Article  Google Scholar 

  • Hart DR, Chute AS (2009) Verification of Atlantic sea scallop (Placopecten magellanicus) shell growth rings by tracking cohorts in fishery closed areas. Can J Fish Aquat Sci 66:751–758

    Article  Google Scholar 

  • Hedgecock D (1994) Does variance in reproductive success limit effective population sizes of marine organisms? In: Beaumont A (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 1222–1344

    Google Scholar 

  • Hedgecock D, Launey S, Pudovkin AI, Naciri Y, Lapègue S, Bonhomme F (2007) Small effective number of parents (N b ) inferred for a naturally spawned cohort of juvenile European flat oysters Ostrea edulis. Mar Biol 150:1173–1182

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  Google Scholar 

  • Kenchington EL, Patwary MU, Zouros E, Bird CJ (2006) Genetic differentiation in relation to marine landscape in a broadcast-spawning bivalve mollusk (Placopecten magellanicus). Mol Ecol 15:1781–1796

    Article  CAS  Google Scholar 

  • Krantz DE, Jones DS, Williams DF (1984) Growth rates of the sea scallop, Placopecten magellanicus, determined from the 18O/16O record in shell calcite. Biol Bull 167:186–199

    Article  Google Scholar 

  • Lewis RI, Thorpe JP (1994) Temporal stability of gene frequencies within genetically heterogeneous populations of the queen scallop Aequipecten (Chlamys) opercularis. Mar Biol 121:117–126

    Article  Google Scholar 

  • Li G, Hedgecock D (1998) Genetic heterogeneity, detected by PCR-SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can J Fish Aquat Sci 55:1025–1033

    Article  CAS  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  Google Scholar 

  • Manuel JL, Burbridge S, Kenchington EL, Ball M, O’Dor RK (1996a) Veligers from two populations of scallop Placopecten magellanicus exhibit different vertical distributions in the same mesocosm. J Shellfish Res 15:251–257

    Google Scholar 

  • Manuel JL, Gallager SM, Pearce CM, Manning DA, O’Dor RK (1996b) Veligers from different populations of sea scallop Placopecten magellanicus have different vertical migration patterns. Mar Ecol Prog Ser 142:147–163

    Article  Google Scholar 

  • Merrill AS, Posgay JA, Nichy FE (1965) Annual marks on the shell and ligament of the sea scallop Placopecten magellanicus. Fish Bull 65:299–311

    Google Scholar 

  • Miller JA, Shanks AL (2004) Evidence for limited larval dispersal in black rockfish (Sebastes melanops): implications for population structure and marine-reserve design. Can J Fish Aquat Sci 61:1723–1735

    Article  Google Scholar 

  • Moberg PE, Burton RS (2000) Genetic heterogeneity among adult and recruit red sea urchins Strongylocentrotus franciscanus. Mar Biol 136:773–784

    Article  CAS  Google Scholar 

  • Murray MC, Hare MP (2006) A genomic scan for divergent selection in a secondary contact zone between Atlantic and Gulf of Mexico oysters, Crassostrea virginica. Mol Ecol 15:4229–4242

    Article  CAS  Google Scholar 

  • Naidu KS (1991) Sea Scallop, Placopecten magellanicus. In: Shumway SE (ed) Developments in aquaculture and fisheries science Vol 21 scallops: biology, ecology, and aquaculture: 861-898. Elsevier, New York

    Google Scholar 

  • Pearce CM, Gallager SM, Manuel JL, Manning DA, O’Dor RK, Bourget E (1998) Effect of thermoclines and turbulence on depth of larval settlement and spat recruitment of the giant scallop Placopecten magellanicus in 9.5 m deep laboratory mesocosms. Mar Ecol Prog Ser 165:195–215

    Article  Google Scholar 

  • Peery MZ, Beissinger SR, House RF, Berube M, Hall LA, Sellas A, Palsbøll PJ (2008) Characterizing source-sink dynamics with genetic parentage assignments. Ecology 89:2746–2759

    Article  Google Scholar 

  • Pettigrew NR, Churchill JH, Janzen CD, Mangum LJ, Signell RP, Thomas AC, Townsend DW, Wallinga JP, Xue HJ (2005) The kinematic and hydrographic structure of the Gulf of Maine Coastal Current. Deep-Sea Res II:2369–2391

    Google Scholar 

  • Posgay JA (1957) The range of the sea scallop. The Nautilus 71:55–57

    Google Scholar 

  • Posgay JA (1981) Movement of tagged sea scallops on Georges Bank. Mar Fish Rev 43:19–25

    Google Scholar 

  • Premetz ED, Snow GW (1953) Status of the New England sea-scallop fishery. Comm Fish Rev 15:1–17

    Google Scholar 

  • Pringle JM, Franks PJS (2001) Asymmetric mixing transport: a horizontal transport mechanism for sinking plankton and sediment in tidal flows. Limnol Oceanogr 46:381–391

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Roughgarden J, Iwasa Y, Baxter C (1985) Demographic theory for an open marine population with space-limited recruitment. Ecology 66:54–67

    Article  Google Scholar 

  • Serchuk FM, Wood PW, Posgay JA, Brown BE (1979) Assessment and status of sea scallop (Placopecten magellanicus) populations off the northeast coast of the United States. Proc Natl Shellfish Assoc 69:161–191

    Google Scholar 

  • Sinclair M, Mohn RK, Probert G, Roddick DL (1985) Considerations for the effective management of Atlantic scallops. Can Tech Rep Fish Aquat Sci 1382:97

    Google Scholar 

  • Stevenson JA, Dickie LM (1954) Annual growth rings and rate of growth of the giant scallop, Placopecten magellanicus (Gmelin), in the Digby area of the Bay of Fundy. J Fish Res Bd Canada 11:660–671

    Article  Google Scholar 

  • Strathmann RR (1985) Feeding and non-feeding larval development and life-history evolution in marine invertebrates. Ann Rev Ecol Syst 16:339–361

    Article  Google Scholar 

  • Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KA, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal marine populations. Biol Bull 70(Suppl S):251–271

    Google Scholar 

  • Tan FC, Cai D, Roddick DL (1988) Oxygen isotope studies on sea scallops, Placopecten magellanicus, from Browns Bank, Nova Scotia. Can J Fish Aquat Sci 45:1378–1386

    Article  Google Scholar 

  • Taylor AC, Venn TJ (1978) Growth of the queen scallop, Chlamys opercularis, from the Clyde Sea area. J Mar Biol Assoc UK 58:687–700

    Article  Google Scholar 

  • Toonen RJ, Grosberg RK (2011) Causes of chaos: spatial and temporal genetic heterogeneity in the intertidal anomuran crab Petrolisthes cinctipes. In: Koenemann S, Held C, Schubard C (eds) Crustacean Issues 19: Phylogeography and Population Genetics in Crustacea. CRC Press, Boca Raton, Florida, pp 75–107

  • Tremblay MJ, Sinclair MM (1988) The vertical and horizontal distribution of sea scallops (Placopecten magellanicus) larvae in the Bay of Fundy in 1984 and 1985. J NW Atl Fish Sci 8:43–53

    Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Weetman D, Ruggiero A, Mariani S, Shaw PW, Lawler AR, Hauser L (2007) Hierarchical population genetic structure in the commercially exploited shrimp Crangon crangon identified by AFLP analysis. Mar Biol 151:565–575

    Article  Google Scholar 

  • Wilding CD, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Evol Biol 14:611–619

    Article  CAS  Google Scholar 

  • Xue HJ, Incze L, Xu D, Wolff N, Pettigrew N (2008) Connectivity of lobster populations in the coastal Gulf of Maine – Part 1: circulation and larval transport potential. Ecol Modell 210:193–211

    Article  Google Scholar 

  • Zhang H, Hare MP (2012) Identifying and reducing AFLP genotyping error: an example in tradeoffs when comparing population structure in broadcast spawning versus brooding oysters. Heredity 108:616–625

    Article  CAS  Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Maine Department of Marine Resources and the National Marine Fisheries Service for collecting sea scallop tissues used for this study. Fragment analyses were conducted at the University of Maine DNA Sequencing Facility and the Cornell University Life Sciences Core Laboratories Center. We are grateful also for laboratory assistance from L. Donnelly, A. McGowan, B.-A. Pomerleau, Z. Salahuddin, and L. Wahl. The manuscript was improved substantially by comments from J. Muhlin, C. Riginos, and two anonymous reviewers. This research was supported by a Maine Sea Grant award to PDR and National Science Foundation Graduate Research and GK-12 Fellowships to EFO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin F. Owen.

Additional information

Communicated by C. Riginos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, E.F., Rawson, P.D. Small-scale spatial and temporal genetic structure of the Atlantic sea scallop (Placopecten magellanicus) in the inshore Gulf of Maine revealed using AFLPs. Mar Biol 160, 3015–3025 (2013). https://doi.org/10.1007/s00227-013-2291-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2291-8

Keywords

Navigation