Skip to main content
Log in

Microbial communities of the carapace, gut, and hemolymph of the Atlantic blue crab, Callinectes sapidus

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The Atlantic blue crab Callinectes sapidus is an important fisheries resource that is subject to mortality and morbidity from hemolymph infections. We used culture-independent methods based on the analysis of 16S rRNA genes to characterize and quantify the microflora from the carapace, gut, and hemolymph of C. sapidus with the goals of (1) characterizing the C. sapidus microbial assemblage and (2) identifying the reservoirs of potential pathogens associated with the crab. We found that the carapace, gut and hemolymph microflora have a core Proteobacteria community with contributions from other phyla including Bacteroidetes, Firmicutes, Spirochetes, and Tenericutes. Within this Proteobacteria core, γ-Proteobacteria, including the members of the Vibrionaceae that are closely related to potential pathogens, dominate. Bacteria closely related to hemolymph pathogens were found on the carapace, supporting the hypothesis that punctures, molting damage, or broken dactyls may be routes for hemolymph infections. These results provide some of the first data on the blue crab microbial assemblage obtained with culture-independent techniques and offer insights into the routes of infection and potential bacterial pathogens associated with blue crabs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Austin B, Zhang X-H (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43:119–124

    Article  CAS  Google Scholar 

  • Bano N, DeRae Smith A, Bennett W, Vasquez L, Hollibaugh JT (2007) Dominance of Mycoplasma in the guts of the Long-Jawed Mudsucker, Gillichthys mirabilis, from five California salt marshes. Environ Microbiol 9:2636–2641. doi:10.1111/j.1462-2920.2007.01381.x

    Article  CAS  Google Scholar 

  • Blake PA, Merson MH, Weaver RE, Hollis DG, Heublein PC (1979) Disease caused by a marine Vibrio. Clinical characteristics and epidemiology. New Engl J Med 300:1

    Article  CAS  Google Scholar 

  • Buchan A, Hadden M, Suzuki MT (2009) Development and application of quantitative-PCR tools for subgroups of the Roseobacter clade. Appl Environ Microbiol 75:7542–7547

    Article  CAS  Google Scholar 

  • Burnett LE, Holman JD, Jorgensen DD, Ikerd JL, Burnett KG (2006) Immune defense reduces respiratory fitness in Callinectes sapidus, the Atlantic blue crab. Biol Bull 211:50–57

    Article  Google Scholar 

  • CDC (1971) Vibrio parahaemolyticus gastroenteritis—Maryland. MMWR Morb Mortal Wkly Rep 20:356

    Google Scholar 

  • CDC (1976) Foodborne and waterborne outbreaks. Annual summary, 1975, Atlanta

    Google Scholar 

  • CDC (1999) Outbreak of Vibrio parahaemolyticus infection associated with eating raw oysters and clams harvested from Long Island Sound—Connecticut, New Jersey, and New York, 1998. MMWR Morb Mortal Wkly Rep 48:48–51

    Google Scholar 

  • CDC (2011) Vital signs: incidence and trends of infections with pathogens transmitted commonly through food—foodborne diseases active surveillance network, 10 U.S. sites, 1996–2010. MMWR Morb Mortal Wkly Rep 60:749–755

    Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER v6. User manual/tutorial Plymouth routine in multivariate ecological research Plymouth Marine Laboratory

  • Cole J, Chai B, Farris R, Wang Q, Kulam-Syed-Mohideen A, McGarrell D, Bandela A, Cardenas E, Garrity G, Tiedje J (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172

    Article  CAS  Google Scholar 

  • Cole J, Wang Q, Cardenas E, Fish J, Chai B, Farris R, Kulam-Syed-Mohideen A, McGarrell D, Marsh T, Garrity G (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  Google Scholar 

  • Colwell R, Wicks T, Tubiash H (1975) A comparative study of the bacterial flora of the hemolymph of Callinectes sapidus. Mar Fish Rev 37:29–33

    Google Scholar 

  • Cook DW, Lofton SR (1973) Chitinoclastic bacteria associated with shell disease in Penaeus shrimp and the blue crab (Callinectes sapidus). J Wildlife Dis 9:154–159

    CAS  Google Scholar 

  • Davis JW, Sizemore RK (1982) Incidence of Vibrio species associated with blue crabs (Callinectes sapidus) collected from Galveston Bay, Texas. Appl Environ Microbiol 43:1092–1097

    CAS  Google Scholar 

  • Faghri MA, Pennington CL, Cronholm LS, Atlas RM (1984) Bacteria associated with crabs from cold waters with emphasis on the occurrence of potential human pathogens. Appl Environ Microbiol 47:1054–1061

    CAS  Google Scholar 

  • Ferguson RL, Buckley E, Palumbo A (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47:49–55

    CAS  Google Scholar 

  • Fouz B, Toranzo AE, Milán M, Amaro C (2000) Evidence that water transmits the disease caused by the fish pathogen Photobacterium damselae subsp. damselae. J Appl Microbiol 88:531–535. doi:10.1046/j.1365-2672.2000.00992.x

    Article  CAS  Google Scholar 

  • Fraune S, Zimmer M (2008) Host-specificity of environmentally transmitted Mycoplasma-like isopod symbionts. Environ Microbiol 10:2497–2504. doi:10.1111/j.1462-2920.2008.01672.x

    Article  CAS  Google Scholar 

  • Giebel J, Binder A, Kirchhoff H (1990) Isolation of Mycoplasma moatsii from the intestine of wild Norway rats (Rattus norvegicus). Vet Microbiol 22:23–29

    Article  CAS  Google Scholar 

  • Gomez-Gil B, Tron-Mayen L, Roque A, Turnbull JF, Inglis V, Guerra-Flores AL (1998) Species of Vibrio isolated from hepatopancreas, haemolymph and digestive tract of a population of healthy juvenile Penaeus vannamei. Aquaculture 163(1):1–9

    Article  Google Scholar 

  • Gomez-Gil B, Roque A, Lacuesta B, Rotllant G (2010) Diversity of vibrios in the haemolymph of the spider crab Maja brachydactyla. J Appl Microbiol 109:918–926

    Article  CAS  Google Scholar 

  • Gulmann LK (2004) Gut-associated microbial symbionts of the marsh fiddler crab, Uca pugnax. Massachusetts Institute of Technology, Cambridge

    Book  Google Scholar 

  • Harris JM (1993) The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb Ecol 25:195–231. doi:10.1007/bf00171889

    Article  Google Scholar 

  • Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21. doi:10.1007/s002489900056

    Article  CAS  Google Scholar 

  • Holben WE, Williams P, Saarinen M, Särkilahti LK, Apajalahti JHA (2002) Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb Ecol 44:175–185. doi:10.1007/s00248-002-1011-6

    Article  CAS  Google Scholar 

  • Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242

    Article  CAS  Google Scholar 

  • Huang Z-B, Guo F, Zhao J, Li W-D, Ke C-H (2010) Molecular analysis of the intestinal bacterial flora in cage-cultured adult small abalone, Haliotis diversicolor. Aquac Res 41:e760–e769

    Article  CAS  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  Google Scholar 

  • Huq A, Colwell RR, Rahman R, Ali A, Chowdhury M, Parveen S, Sack D, Russek-Cohen E (1990) Detection of Vibrio cholerae O1 in the aquatic environment by fluorescent-monoclonal antibody and culture methods. Appl Environ Microbiol 56:2370–2373

    CAS  Google Scholar 

  • Kalanetra KM, Bano N, Hollibaugh JT (2009) Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ Microbiol 11:2434–2445

    Article  CAS  Google Scholar 

  • Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29:181–184

    Article  CAS  Google Scholar 

  • Krantz G, Colwell R, Lovelace E (1969) Vibrio parahaemolyticus from the blue crab Callinectes sapidus in Chesapeake Bay. Science 164:1286

    Article  CAS  Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Academic Press, Chichester, pp 115–175

    Google Scholar 

  • Lee ZMP, Bussema C III, Schmidt TM (2009) rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res 37:D489–D493

    Article  CAS  Google Scholar 

  • Li K, Guan W, Wei G, Liu B, Xu J, Zhao L, Zhang Y (2007) Phylogenetic analysis of intestinal bacteria in the Chinese mitten crab (Eriocheir sinensis). J Appl Microbiol 103:675–682

    Article  CAS  Google Scholar 

  • Li S, Sun L, Wu H, Hu Z, Liu W, Li Y, Wen X (2012) The intestinal microbial diversity in mud crab (Scylla paramamosain) as determined by PCR-DGGE and clone library analysis. J Appl Microbiol 113:1341–1351

    Article  CAS  Google Scholar 

  • Meziti A, Ramette A, Mente E, Kormas KA (2010) Temporal shifts of the Norway lobster (Nephrops norvegicus) gut bacterial communities. FEMS Microbiol Ecol 74:472–484

    Article  CAS  Google Scholar 

  • Molenda JR, Johnson WG, Fishbein M, Wentz B, Mehlman IJ, Dadisman TA (1972) Vibrio parahaemolyticus gastroenteritis in Maryland: laboratory aspects. Appl Microbiol 24:444–448

    CAS  Google Scholar 

  • Noga E, Engel D, Arroll T, McKenna S, Davidian M (1994) Low serum antibacterial activity coincides with increased prevalence of shell disease in blue crabs Callinectes sapidus. Dis Aquat Org 19:121–128

    Article  Google Scholar 

  • Noga EJ, Smolowitz R, Khoo LH (2000) Pathology of shell disease in the blue crab, Callinectes sapidus Rathbun, (Decapoda: Portunidae). J Fish Dis 23:389–399. doi:10.1046/j.1365-2761.2000.00249.x

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson G, Solymos P, Stevens M, Wagner H (2009) vegan: Community Ecology Package. R package version 1.15-2

  • Oxley APA, Shipton W, Owens L, McKay D (2002) Bacterial flora from the gut of the wild and cultured banana prawn, Penaeus merguiensis. J Appl Microbiol 93:214–223. doi:10.1046/j.1365-2672.2002.01673.x

    Article  CAS  Google Scholar 

  • Phillips FA, Peeler JT (1972) Bacteriological survey of the blue crab industry. Appl Microbiol 24:958–966

    CAS  Google Scholar 

  • R Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Roman M, Burnett LE, Burnett KG (unpublished data) The effect of the pathogenic bacterium Vibrio campbellii on fatigue in the Atlantic blue crab, Callinectes sapidus, during sustained exercise

  • Scholnick DA, Burnett KG, Burnett LE (2006) Impact of exposure to bacteria on metabolism in the penaeid shrimp Litopenaeus vannamei. Biol Bull 211:44–49

    Article  Google Scholar 

  • Sizemore R, Colwell R, Tubiash H, Lovelace T (1975) Bacterial flora of the hemolymph of the blue crab, Callinectes sapidus: numerical taxonomy. Appl Microbiol 29:393–399

    CAS  Google Scholar 

  • Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66(11):4605–4614

    Article  CAS  Google Scholar 

  • Tanaka R, Ootsubo M, Sawabe T, Ezura Y, Tajima K (2004) Biodiversity and in situ abundance of gut microflora of abalone (Haliotis discus hannai) determined by culture-independent techniques. Aquaculture 241(1–4):453–463. doi:10.1016/j.aquaculture.2004.08.032

    Article  Google Scholar 

  • Thibodeaux LK, Burnett KG, Burnett LE (2009) Energy metabolism and metabolic depression during exercise in Callinectes sapidus, the Atlantic blue crab: effects of the bacterial pathogen Vibrio campbellii. J Exp Biol 212:3428–3439

    Article  CAS  Google Scholar 

  • Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF (2004) Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl Environ Microbiol 70:4103–4110

    Article  CAS  Google Scholar 

  • Thyssen A, Grisez L, Van Houdt R, Ollevier F (1998) Phenotypic characterization of the marine pathogen Photobacterium damselae subsp. piscicida. Int J Syst Bacteriol 48:1145–1151. doi:10.1099/00207713-48-4-1145

    Article  Google Scholar 

  • Tindall BJ, Rosselló-Mora R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    Article  CAS  Google Scholar 

  • Tubiash HS, Sizemore RK, Colwell RR (1975) Bacterial flora of the hemolymph of the blue crab, Callinectes sapidus: most probable numbers. Appl Microbiol 29:388–392

    CAS  Google Scholar 

  • Ward N, Steven B, Penn K, Methé B, Detrich W (2009) Characterization of the intestinal microbiota of two Antarctic notothenioid fish species. Extremophiles 13:679–685. doi:10.1007/s00792-009-0252-4

    Article  Google Scholar 

  • Welsh PC, Sizemore RK (1985) Incidence of bacteremia in stressed and unstressed populations of the blue crab, Callinectes sapidus. Appl Environ Microbiol 50:420–425

    CAS  Google Scholar 

  • Williams-Walls N (1968) Clostridium botulinum type F: isolation from crabs. Science 162:375–376

    Article  CAS  Google Scholar 

  • Wong H-C, Liu S-H, Ku L-W, Lee I, Wang T-K, Lee Y-S, Lee C-L, Kuo L-P, Shih DY-C (2000) Characterization of Vibrio parahaemolyticus isolates obtained from foodborne illness outbreaks during 1992 through 1995 in Taiwan. J Food Protect 63:900–906

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NOAA Oceans and Human Health Initiative Traineeship S0867882 (CEG), National Science Foundation awards IOS-0725245 (KGB, LEB), and NSF OCE 12-37130 (JTH). This is publication #403 from the Grice Marine Laboratory. We thank Nat Johnson and Kristin Stover (Burnett Lab) for their assistance in collecting specimens. We thank two anonymous reviewers and the Editors for suggestions that have helped improved the quality and focus on this MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Hollibaugh.

Additional information

Communicated by T. Reusch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Givens, C.E., Burnett, K.G., Burnett, L.E. et al. Microbial communities of the carapace, gut, and hemolymph of the Atlantic blue crab, Callinectes sapidus . Mar Biol 160, 2841–2851 (2013). https://doi.org/10.1007/s00227-013-2275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2275-8

Keywords

Navigation