Skip to main content

Advertisement

Log in

Mechanistic origins of variability in phytoplankton dynamics. Part II: analysis of mesocosm blooms under climate change scenarios

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Driving factors of phytoplankton spring blooms have been discussed since long, but rarely analyzed quantitatively. Here, we use a mechanistic size-based ecosystem model to reconstruct observations made during the Kiel mesocosm experiments (2005–2006). The model accurately hindcasts highly variable bloom developments including community shifts in cell size. Under low light, phytoplankton dynamics was mostly controlled by selective mesozooplankton grazing. Selective grazing also explains initial dominance of large diatoms under high light conditions. All blooms were mainly terminated by aggregation and sedimentation. Allometries in nutrient uptake capabilities led to a delayed, post-bloom dominance of small species. In general, biomass and trait dynamics revealed many mutual dependencies, while growth factors decoupled from the respective selective forces. A size shift induced by one factor often changed the growth dependency on other factors. Within climate change scenarios, these indirect effects produced large sensitivities of ecosystem fluxes to the size distribution of winter phytoplankton. These sensitivities exceeded those found for changes in vertical mixing, whereas temperature changes only had minimal impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aberle N, Lengfellner K, Sommer U (2007) Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150:668–681

    Article  CAS  Google Scholar 

  • Abrams PA (1995) Implications of dynamically variable traits for identifying, classifying and measuring direct and indirect effects in ecological communities. Am Nat 146:112–134

    Article  Google Scholar 

  • Alldredge A, Passow U, Logan B (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res Part I Oceanogr Res Pap 40:1131–1140

    Article  CAS  Google Scholar 

  • Alldredge AL, Gotschalk C, Passow U, Riebesell U (1995) Mass aggregation of diatom blooms: insights from a mesocosm study. Deep Sea Res Part II 42:9–27

    Article  CAS  Google Scholar 

  • Armstrong RA (2003) A hybrid spectral representation of phytoplankton growth and zooplankton response: The “control rod” model of plankton interaction. Deep Sea Res II 50:2895–2916

    Article  Google Scholar 

  • Baird M (2010) Limits to prediction in a size-resolved pelagic ecosystem model. J Plankton Res 32:1131–1146

    Article  Google Scholar 

  • Banas N (2011) Adding rich trophic interactions to a size-spectral plankton model: emergent diversity patterns and limits on predictability. Ecol Mod 222:2663–2675

    Article  CAS  Google Scholar 

  • Berggreen U, Hansen B, Kiørboe T (1988) Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar Biol 99:341–352

    Article  Google Scholar 

  • Bolker B, Holyoak M, Křivan V, Rowe L, Schmitz O (2003) Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84:1101–1114

    Article  Google Scholar 

  • Cermeño P, Marañón E, Rodríguez J, Fernández E (2005) Large-sized phytoplankton sustain higher carbon-specific photosynthesis than smaller cells in a coastal eutrophic ecosystem. Mar Ecol Progr Ser 297:51–60

    Article  Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci 106:12,788

    Article  CAS  Google Scholar 

  • Fuchs H, Franks P (2010) Plankton community properties determined by nutrients and size-selective feeding. Mar Ecol Progr Ser 413:1–15

    Article  Google Scholar 

  • Gaedke U, Rubenstroth-Bauer M, Wiegand I, Tirok K, Aberle N, Breithaupt P, Lengfellner K, Wohlers J, Sommer U (2010) Biotic interactions may overrule direct climate effects on spring phytoplankton dynamics. Global Change Biol 16:1122–1136

    Article  Google Scholar 

  • Geider RJ, MacIntyre HL, Kana TM (1998) A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Lim Ocean 43:679–694

    Article  CAS  Google Scholar 

  • Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Lim Ocean 45:1058–1066

    Article  Google Scholar 

  • Greene C (1983) Selective predation in freshwater zooplankton communities. Internationale Revue der gesamten Hydrobiologie und Hydrographie 68:297–315

    Article  Google Scholar 

  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Jackson GA (1990) A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res 37:1197 – 1211

    Article  CAS  Google Scholar 

  • Jansen S (2008) Copepods grazing on Coscinodiscus wailesii: a question of size? Helgoland Mar Res 62:251–255

    Article  Google Scholar 

  • Kiørboe T, Lundsgaard C, Olesen M, Hansen JLS (1994) Aggregation and sedimentation processes during a spring phytoplankton bloom: a field experiment to test coagulation theory. J Mar Res 52:297–323

    Article  Google Scholar 

  • Köhler P, Wirtz K (2002) Linear understanding of a huge aquatic ecosystem model using a group-collecting sensitivity study. Environ Model Softw 17:613–635

    Article  Google Scholar 

  • Kriest I, Evans G (1999) Representing phytoplankton aggregates in biogeochemical models. Deep Sea Res 46:1841–1859

    Article  CAS  Google Scholar 

  • Lewontin R (1997) Dobzhansky’s genetics and the origin of species: is it still relevant? Genetics 147:351–355

    CAS  Google Scholar 

  • Lunau M, Lemke A, Dellwig O, Simon M (2006) Physical and biogeochemical controls of microaggregate dynamics in a tidally affected coastal ecosystem. Lim Ocean 51:847–859

    Article  CAS  Google Scholar 

  • Maerz J, Wirtz K (2009) Resolving physically and biologically driven suspended particulate matter dynamics in a tidal basin with a distribution-based model. Est Coast Shelf Sci 84:128–138

    Article  CAS  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Lim Ocean 45:569–579

    Article  CAS  Google Scholar 

  • Olesen M (1995) Comparison of the sedimentation of a diatom spring bloom and of a subsurface chlorophyll maximum. Mar Biol 121:541–547

    Article  Google Scholar 

  • Pagano M (2008) Feeding of tropical cladocerans (Moina micrura, Diaphanosoma excisum) and rotifer (Brachionus calyciflorus) on natural phytoplankton: effect of phytoplankton size–structure. J Plankton Res 30:401

    Article  Google Scholar 

  • Peeters F, Straile D, Lorke A, Ollinger D (2007) Turbulent mixing and phytoplankton spring bloom development in a deep lake. Lim Ocean 52:286–298

    Article  Google Scholar 

  • Porter E, Sanford L, Gust G, Porter F (2004) Combined water-column mixing and benthic boundary-layer flow in mesocosms: key for realistic benthic-pelagic coupling studies. Mar Ecol Progr Ser 271:43–60

    Article  Google Scholar 

  • Putt M, Stoecker D (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Lim Ocean 34:1097–1103

    Article  Google Scholar 

  • Raven JA, Waite AM (2004) The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol 162:45–61

    Article  Google Scholar 

  • Richardson T, Cullen J (1995) Changes in buoyancy and chemical composition during growth of a coastal marine diatom: ecological and biogeochemical consequences. Mar Ecol Progr Ser 128:77–90

    Article  CAS  Google Scholar 

  • Richman S, Heinle D, Huff R (1977) Grazing by adult estuarine calanoid copepods of the Chesapeake Bay. Mar Biol 42:69–84

    Article  Google Scholar 

  • Riebesell U (1989) Comparison of sinking and sedimentation rate measurements in a diatom winter/spring bloom. Mar Ecol Progr Ser 54:109–119

    Article  Google Scholar 

  • Smayda TJ (1970) The suspension and sinking of phytoplankton in the sea. Oceanogr Mar Biol Annu Rev 8:353–414

    Google Scholar 

  • Smetacek V (1985) Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar Biol 84:239–251

    Article  Google Scholar 

  • Smetacek V (2001) A watery arms race. Nature 411:745

    Article  CAS  Google Scholar 

  • Smetacek V, Assmy P, Henjes J (2004) The role of grazing in structuring southern ocean pelagic ecosystems and biogeochemical cycles. Antarct Sci 16:541–558

    Article  Google Scholar 

  • Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208

    Article  Google Scholar 

  • Sommer U, Lewandowska A (2011) Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob Change Biol 17:154–162

    Article  Google Scholar 

  • Tian T, Merico A, Su J, Staneva J, Wiltshire K, Wirtz KW (2009) Importance of resuspended sediment dynamics for the phytoplankton spring bloom in a coastal marine ecosystem. J Sea Res 62:214–228

    Article  Google Scholar 

  • Tian T, Su J, Flöser G, Wiltshire K, Wirtz K (2011) Factors controlling the onset of spring blooms in the German Bight 2002–2005: light, wind and stratification. Cont Shelf Res 31:1140–1148

    Article  Google Scholar 

  • Tirok K, Bauer B, Wirtz K, Gaedke U (2011) Community dynamics driven by feedbacks between functionally diverse trophic levels. PLOS One 6:e27357

    Article  CAS  Google Scholar 

  • Wiltshire K, Malzahn A, Greve W, Wirtz K, Janisch S, Mangelsdorf P, Manly B, Boersma M (2008) Resilience of North Sea phytoplankton spring blooms dynamics: an analysis of long term data at Helgoland Roads. Lim Ocean 53:1294–1302

    Article  Google Scholar 

  • Wirtz KW (2011) Non-uniform scaling in phytoplankton growth rate due to intracellular light and CO2 decline. J Plankton Res 33:1325–1341

    Article  Google Scholar 

  • Wirtz KW (2013) Mechanistic origins of variability in phytoplankton dynamics. Part I: niche formation revealed by a size-based model. Mar Biol. doi:10.1007/s00227-012-2163-7

  • Wirtz KW, Pahlow M (2010) Dynamic CHL and N–C regulation in algae optimizes instantaneous growth rate. Mar Ecol Progr Ser 402:81–96

    Article  CAS  Google Scholar 

  • Wirtz KW, Wiltshire K (2005) Long-term shifts in marine ecosystem functioning detected by inverse modeling of the Helgoland Roads time-series. J Mar Syst 56:262–282

    Article  Google Scholar 

  • Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K, Hoppe HG, Sommer U, Riebesell U (2009) Changes in biogenic carbon flow in response to sea surface warming. Proc Natl Acad Sci 106:7067–7072

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Katrin Tirok for helping with the data integration, and Kathrin Lengfellner, Nicole Aberle-Mahlzahn, and Thomas Hansen for their support in conducting the mesocosm experiments and for their data contribution. Two anonymous reviewers provided helpful comments on the manuscript. This work was supported by the Helmholtz Society via the program PACES and by the German Research Foundation (DFG) within the Priority Program 1162 The impact of climate variability on aquatic ecosystems (AQUASHIFT) (GA401/7-1,7-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai W. Wirtz.

Additional information

Communicated by U.-G. Berninger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirtz, K.W., Sommer, U. Mechanistic origins of variability in phytoplankton dynamics. Part II: analysis of mesocosm blooms under climate change scenarios. Mar Biol 160, 2503–2516 (2013). https://doi.org/10.1007/s00227-013-2271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2271-z

Keywords

Navigation