Skip to main content
Log in

Differential effects of temperature variability on the transmission of a marine parasite

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Temperature variability is particularly pronounced in intertidal systems. The importance of considering this variability has been increasingly recognised, especially in the context of climate change and disease dynamics. Here, we investigated the effects of temperature variability on the transmission of the intertidal trematode Maritrema novaezealandensis. The experimental treatments were 15 °C (control), 15 + 5 °C daily, 15 + 10 °C every second day, 15 + 15 °C every third day (overall equal thermal loading), and a heat wave treatment (15 + 10 °C daily). Daily 6 h incubations were carried out corresponding to daytime low tides over a 12-day period. Effects on output of transmission stages (cercariae) from infected Zeacumantus subcarinatus snail hosts and transmission success of cercariae to Paracalliope novizealandiae amphipod hosts were quantified, as well as the survival of amphipods. Results showed differential effects on output and transmission success. The number of cercariae emerging was similar for treatments with equal thermal loading, but was substantially increased in the heat wave treatment. Transmission success was highest and comparable for the treatments with regular daily temperature increases (i.e. 15 + 5 °C and heat wave), compared to other treatments. Amphipod survival was not affected by temperature treatment directly, but by the number of parasites infecting an amphipod, as well as amphipod sex. These results demonstrate that cercarial output depends mostly on total thermal loading, whereas successful infection of amphipods is determined by total time above 15 °C. Repeated exposure to ~25 °C, as expected under a heat wave scenario, therefore increases both transmission pressure and success, and hence, the risk of parasite-induced mortality in amphipods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Habbib WMS, Grainger JNR (1983) The effect of constant and changing temperature on the rate of development of the eggs and the larval stages of Fasciola hepatica. Proc R Ir Acad Biol Geol Chem Sci 83(22):281–290

    Google Scholar 

  • Bates AE, Poulin R, Lamare MD (2010) Spatial variation in parasite-induced mortality in an amphipod: shore height versus exposure history. Oecologia 163(3):651–659

    Article  CAS  Google Scholar 

  • Benedetti-Cecchi L (2003) The importance of the variance around the mean effect size of ecological processes. Ecology 84(9):2335–2346

    Article  Google Scholar 

  • Benedetti-Cecchi L, Bertocci I, Vaselli S, Maggi E (2006) Temporal variance reverses the impact of high mean intensity of stress in climate change experiments. Ecology 87(10):2489–2499

    Article  Google Scholar 

  • Boyd PW, Hutchins DA (2012) Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar Ecol Prog Ser 470:125–135

    Article  Google Scholar 

  • Cattadori IM, Haydon DT, Hudson PJ (2005) Parasites and climate synchronize red grouse populations. Nature 433(7027):737–741

    Article  CAS  Google Scholar 

  • Combes C, Fournier A, Mone H, Theron A (1994) Behaviors in trematode cercariae that enhance parasite transmission—patterns and processes. Parasitology 109:S3–S13

    Article  Google Scholar 

  • Denny MW, Hunt LJH, Miller LP, Harley CDG (2009) On the prediction of extreme ecological events. Ecol Monogr 79(3):397–421

    Article  Google Scholar 

  • Duncan AB, Fellous S, Kaltz O (2011) Temporal variation in temperature determines disease spread and maintenance in Paramecium microcosm populations. Proc R Soc Biol 278(1723):3412–3420

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074

    Article  CAS  Google Scholar 

  • Fingerut JT, Zimmer CA, Zimmer RK (2003) Patterns and processes of larval emergence in an estuarine parasite system. Biol Bull 205(2):110–120

    Article  Google Scholar 

  • Fischer K, Koelzow N, Hoeltje H, Karl I (2011) Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia 166(1):23–33

    Article  Google Scholar 

  • Fredensborg BL, Mouritsen KN, Poulin R (2004) Intensity-dependent mortality of Paracalliope novizealandiae (Amphipoda: Crustacea) infected by a trematode: experimental infections and field observations. J Exp Mar Biol Ecol 311(2):253–265

    Article  Google Scholar 

  • Fredensborg BL, Mouritsen KN, Poulin R (2005) Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarinatus. Mar Ecol Prog Ser 290:109–117

    Article  Google Scholar 

  • Galaktionov KV, Dobrovolskij AA (2003) The biology and evolution of trematodes. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hernandez AD, Poole A, Cattadori IM (2013) Climate changes influence free-living stages of soil-transmitted parasites of European rabbits. Glob Chang Biol 19:1028–1042

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5(7):365–374

    Article  Google Scholar 

  • Johnson PTJ, Thieltges DW (2010) Diversity, decoys and the dilution effect: how ecological communities affect disease risk. J Exp Biol 213(6):961–970

    Article  CAS  Google Scholar 

  • Keeney DB, Waters JM, Poulin R (2007) Diversity of trematode genetic clones within amphipods and the timing of same-clone infections. Int J Parasitol 37(3–4):351–357

    Article  CAS  Google Scholar 

  • Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE, Myers SS, Bogich T, Ostfeld RS (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468(7324):647–652

    Article  CAS  Google Scholar 

  • Koehler AV, Poulin R (2010) Host partitioning by parasites in an intertidal crustacean community. J Parasitol 96(5):862–868

    Article  Google Scholar 

  • Kutz SJ, Hoberg EP, Polley L, Jenkins EJ (2005) Global warming is changing the dynamics of Arctic host-parasite systems. Proc R Soc Biol 272(1581):2571–2576

    Article  CAS  Google Scholar 

  • Lafferty KD (2009) Calling for an ecological approach to studying climate change and infectious diseases. Ecology 90(4):932–933

    Article  Google Scholar 

  • Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW (2011) Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci USA 108(18):7460–7465

    Article  CAS  Google Scholar 

  • Landis SH, Kalbe M, Reusch TBH, Roth O (2012) Consistent pattern of local adaptation during an experimental heat wave in a pipefish-trematode host-parasite system. PLoS ONE 7(1):e30658. doi:10.1371/journal.pone.0030658

    Article  CAS  Google Scholar 

  • Lauckner G (1984) Impact of trematode parasitism on the fauna of a North Sea tidal flat. Helgol Meeresunters 37(1–4):185–199

    Google Scholar 

  • Le Moullac G, Haffner P (2000) Environmental factors affecting immune responses in Crustacea. Aquaculture 191(1–3):121–131

    Article  Google Scholar 

  • Martorelli SR, Fredensborg BL, Mouritsen KN, Poulin R (2004) Description and proposed life cycle of Maritrema novaezealandensis N. sp (Microphallidae) parasitic in red-billed gulls, Larus novaehollandiae scopulinus, from Otago Harbor, South Island, New Zealand. J Parasitol 90(2):272–277

    Article  Google Scholar 

  • Mislan KAS, Wethey DS, Helmuth B (2009) When to worry about the weather: role of tidal cycle in determining patterns of risk in intertidal ecosystems. Glob Chang Biol 15(12):3056–3065

    Article  Google Scholar 

  • Molnar PK, Kutz SJ, Hoar BM, Dobson AP (2013) Metabolic approaches to understanding climate change impacts on seasonal host-macroparasite dynamics. Ecol Lett 16(1):9–21

    Article  Google Scholar 

  • Morley NJ, Lewis JW (2012) Thermodynamics of cercarial development and emergence in trematodes. Parasitology. doi:10.1017/S0031182012001783

    Google Scholar 

  • Mouritsen KN (2002) The Hydrobia ulvae-Maritrema subdolum association: influence of temperature, salinity, light, water-pressure and secondary host exudates on cercarial emergence and longevity. J Helminthol 76(4):341–347

    Article  CAS  Google Scholar 

  • Mouritsen KN, Poulin R (2002) Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124:S101–S117

    Google Scholar 

  • Mouritsen KN, Poulin R (2005) Parasites boost biodiversity and changes animal community structure by trait-mediated indirect effects. Oikos 108(2):344–350

    Article  Google Scholar 

  • Mouritsen KN, Poulin R (2010) Parasitism as a determinant of community structure on intertidal flats. Mar Biol 157(1):201–213

    Article  Google Scholar 

  • Mydlarz LD, Jones LE, Harvell CD (2006) Innate immunity environmental drivers and disease ecology of marine and freshwater invertebrates. Annu Rev Ecol Evol Syst 37:251–288

    Article  Google Scholar 

  • Niehaus AC, Angilletta MJ Jr, Sears MW, Franklin CE, Wilson RS (2012) Predicting the physiological performance of ectotherms in fluctuating thermal environments. J Exp Biol 215(4):694–701

    Article  Google Scholar 

  • Orlofske SA, Jadin RC, Preston DL, Johnson PTJ (2012) Parasite transmission in complex communities: predators and alternative hosts alter pathogenic infections in amphibians. Ecology 93(6):1247–1253

    Article  Google Scholar 

  • Ostfeld RS (2009) Climate change and the distribution and intensity of infectious diseases. Ecology 90(4):903–905

    Article  Google Scholar 

  • Paaijmans KP, Read AF, Thomas MB (2009) Understanding the link between malaria risk and climate. Proc Natl Acad Sci USA 106(33):13844–13849

    Article  CAS  Google Scholar 

  • Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB (2010) Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA 107(34):15135–15139

    Article  CAS  Google Scholar 

  • Pascual M, Dobson AP, Bouma MJ (2009) Underestimating malaria risk under variable temperatures. Proc Natl Acad Sci USA 106(33):13645–13646

    Article  CAS  Google Scholar 

  • Pflüger W (1981) Experimental epidemiology of Schistosomiasis. 2. Pre-patency of Schistosoma mansoni in Biomphalaria glabrata at diurnally fluctuating temperatures. Parasitol Res 66(2):221–229

    Google Scholar 

  • Pietrock M, Marcogliese DJ (2003) Free-living endohelminth stages: at the mercy of environmental conditions. Trends Parasitol 19(7):293–299

    Article  Google Scholar 

  • Pincebourde S, Sanford E, Casas J, Helmuth B (2012) Temporal coincidence of environmental stress events modulates predation rates. Ecol Lett 15(7):680–688

    Article  Google Scholar 

  • Poulin R, Mouritsen KN (2006) Climate change, parasitism and the structure of intertidal ecosystems. J Helminthol 80(2):183–191

    Article  CAS  Google Scholar 

  • Raffel TR, Hoverman JT, Halstead NT, Michel PJ, Rohr JR (2010) Parasitism in a community context: trait-mediated interactions with competition and predation. Ecology 91(7):1900–1907

    Article  Google Scholar 

  • Rohr JR, Dobson AP, Johnson PTJ, Kilpatrick AM, Paull SH, Raffel TR, Ruiz-Moreno D, Thomas MB (2011) Frontiers in climate change-disease research. Trends Ecol Evol 26(6):270–277

    Article  Google Scholar 

  • Roth O, Kurtz J, Reusch TBH (2010) A summer heat wave decreases the immunocompetence of the mesograzer Idotea baltica. Mar Biol 157(7):1605–1611

    Article  Google Scholar 

  • Saunders LM, Tompkins DM, Hudson PJ (2002) Stochasticity accelerates nematode egg development. J Parasitol 88(6):1271–1272

    CAS  Google Scholar 

  • Seppälä O, Jokela J (2011) Immune defence under extreme ambient temperature. Biol Lett 7(1):119–122

    Article  Google Scholar 

  • Skaug H, Fournier D, Nielsen A, Magnusson A, Bolker B (2012) Generalized linear mixed models using AD model builder. R package version 0.7.2.12

  • Smith MD (2011) An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol 99(3):656–663

    Article  Google Scholar 

  • Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr Comp Biol 42(4):780–789

    Article  Google Scholar 

  • Studer A, Poulin R (2012a) Effects of salinity on an intertidal host-parasite system: is the parasite more sensitive than its host? J Exp Mar Biol Ecol 412:110–116

    Article  Google Scholar 

  • Studer A, Poulin R (2012b) Seasonal dynamics in an intertidal mudflat: the case of a complex trematode life cycle. Mar Ecol Prog Ser 455:79–93

    Article  Google Scholar 

  • Studer A, Thieltges DW, Poulin R (2010) Parasites and global warming: net effects of temperature on an intertidal host–parasite system. Mar Ecol Prog Ser 415:11–22

    Article  Google Scholar 

  • Studer A, Lamare MD, Poulin R (2012) Effects of ultraviolet radiation on the transmission process of an intertidal trematode parasite. Parasitology 139(4):537–546

    Article  CAS  Google Scholar 

  • Studer A, Poulin R, Tompkins DM (2013) Local effects of a global problem: modelling the risk of parasite-induced mortality in an intertidal trematode–amphipod system. Oecologia. doi:10.1007/s00442-012-2569-4

    Google Scholar 

  • Thieltges DW, Rick J (2006) Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Dis Aquat Organ 73(1):63–68

    Google Scholar 

  • Thieltges DW, Jensen KT, Poulin R (2008) The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135(4):407–426

    Article  CAS  Google Scholar 

  • Thompson RM, Beardall J, Beringer J, Grace M, Sardina P (2013) Means and extremes: building variability into community-level climate change experiments. Ecol Lett 16:799–806

    Article  Google Scholar 

  • Wernberg T, Smale DA, Thomsen MS (2012) A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob Chang Biol 18(5):1491–1498

    Article  Google Scholar 

  • Wethey DS, Woodin SA, Hilbish TJ, Jones SJ, Lima FP, Brannock PM (2011) Response of intertidal populations to climate: effects of extreme events versus long term change. J Exp Mar Biol Ecol 400(1–2):132–144

    Article  Google Scholar 

  • Wood CL, Byers JE, Cottingham KL, Altman I, Donahue MJ, Blakeslee AMH (2007) Parasites alter community structure. Proc Natl Acad Sci USA 104(22):9335–9339

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the two reviewers for their constructive comments on an earlier version of the manuscript. We would also like to thank the technical staff, in particular Kim Garrett, at the Department of Zoology, University of Otago, for support. This research was funded by a University of Otago Research Grant to RP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Studer.

Additional information

Communicated by U. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Studer, A., Poulin, R. Differential effects of temperature variability on the transmission of a marine parasite. Mar Biol 160, 2763–2773 (2013). https://doi.org/10.1007/s00227-013-2269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2269-6

Keywords

Navigation