Marine Biology

, Volume 160, Issue 10, pp 2699–2709 | Cite as

Bacteriolytic Bacillus species isolated from brackish waters of the Southern Baltic Sea

  • Christiane BrackEmail author
  • Annett Mikolasch
  • Rüdiger Pukall
  • Peter Schumann
  • Marion Köster
  • Frieder Schauer
Original Paper


The present study examines antagonistic relationships between different microorganisms inhabiting brackish water and includes a systematic screening for bacteriolytic prokaryotes in the brackish waters of the Southern Baltic Sea (Nordruegenscher Bodden) sampled in July/August 2009. Ten of the 35 marine bacteriolytic isolates belong to the genus Bacillus. Five isolates (B. pumilus, B. subtilis, B. megaterium, B. licheniformis) lysed living microbial cells such as the bacteria Arthrobacter citreus, Arthrobacter protophormiae, Micrococcus luteus, Pseudomonas putida and the yeast Trichosporon mucoides. These and other bacteria (Aeromonas sp., Bacillus subtilis, Chromobacterium violaceum, Citrobacter freundii, Enterobacter aerogenes, Proteus mirabilis, Pseudomonas aeruginosa and Serratia marcescens) were also lysed as autoclaved and pasteurized cells on agar plates. One isolate of Bacillus pumilus showed a distinct bacteriolysis activity against pasteurized cells of A. citreus in liquid culture. Our results suggest that Bacillus species may play a role as opportunistic predators in the marine microbial food web.


Arthrobacter Bacillus Species Cellular Fatty Acid Profile Prey Cell Lysis Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Anne Reinhard, Brigitte Fricke, Gaby Pötter and Ulrike Steiner for laboratory assistance, Bob Jack for reviewing the manuscript and Sabine Schade (Institute of Microbiology, Greifswald) for the photography of lysis zones. We also thank the government of Mecklenburg-Vorpommern (Germany) for financial support in the form of Landesgraduiertenstipendium.


  1. Aunpad R, Na-Bangchang K (2007) Pumilicin 4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly isolated bacteria Bacillus pumilus strain WAPB4. Curr Microbiol 55:308–313. doi: 10.1007/s00284-006-0632-2 CrossRefGoogle Scholar
  2. Berleman JE, Kirby JR (2009) Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33:942–957. doi: 10.1111/j.1574-6976.2009.00185.x CrossRefGoogle Scholar
  3. Brinkhoff T, Bach G, Heidorn T, Liang LF, Schlingloff A, Simon M (2004) Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565. doi: 10.1128/AEM.70.4.2560-2565.2003 CrossRefGoogle Scholar
  4. Bruce J (1996) Automated system rapidly identifies and characterizes microorganisms in food. Food Technol 50:77–81Google Scholar
  5. Bruhn JB, Nielsen KF, Hjelm M, Hansen M, Bresciani J, Schulz S, Gram L (2005) Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Appl Environ Microbiol 71:7263–7270. doi: 10.1128/AEM.71.11.7263-7270.2005 CrossRefGoogle Scholar
  6. Burgess JG, Jordan EM, Bregu M, Mearns-Spragg A, Boyd KG (1999) Microbial antagonism: a neglected avenue of natural products research. J Biotechnol 70:27–32. doi: 10.1016/S0168-1656(99)00054-1 CrossRefGoogle Scholar
  7. de Carvalho CCCR, Fernandes P (2010) Production of metabolites as bacterial responses to the marine environment. Mar Drugs 8:705–727. doi: 10.3390/md8030705 CrossRefGoogle Scholar
  8. Dupont S, Wilson K, Obst M, Skold H, Nakano H, Thorndyke MC (2007) Marine ecological genomics: when genomics meets marine ecology. Mar Ecol Prog Ser 332:257–273. doi: 10.3354/meps332257 CrossRefGoogle Scholar
  9. Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985. doi: 10.1023/A:1020793726898 CrossRefGoogle Scholar
  10. Engelberg-Kulka H, Hazan R (2003) Cannibals defy starvation and avoid sporulation. Science 301:467–468. doi: 10.1126/science.1088051 CrossRefGoogle Scholar
  11. Gonzalez-Pastor JE, Hobbs EC, Losick R (2003) Cannibalism by sporulating bacteria. Science 301:510–513. doi: 10.1126/science.1086462 CrossRefGoogle Scholar
  12. Grossart HP, Schlingloff A, Bernhard M, Simon M, Brinkhoff T (2004) Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiol Ecol 47:387–396. doi: 10.1016/S0168-6496(03)00305-2 CrossRefGoogle Scholar
  13. Harwood CR (1992) Bacillus subtilis and its relatives—molecular biological and industrial workhorses. Trends Biotechnol 10:247–256. doi: 10.1016/0167-7799(92)90233-L CrossRefGoogle Scholar
  14. Jurkevitch E (2007) Predatory behaviors in bacteria—diversity and transitions. Microbe 2:67–73. doi: 10.1007/7171 Google Scholar
  15. Jurkevitch E, Shapira G (2000). Structure and colonization dynamics of epiphytic bacterial communities and of selected component strains on tomato (Lycopersicon esculentum) leaves. FEMS Microbiol Ecol 40:300–308, ISSN: 0095-3628Google Scholar
  16. Kanzog C, Ramette A, Queric NV, Klages M (2009) Response of benthic microbial communities to chitin enrichment: an in situ study in the deep Arctic Ocean. Polar Biol 32:105–112. doi: 10.1007/s00300-008-0510-4 CrossRefGoogle Scholar
  17. Köster M, Dahlke S, MeyerReil LA (1997) Microbiological studies along a gradient of eutrophication in a shallow coastal inlet in the southern Baltic Sea (Nordrügensche Bodden). Mar Ecol Prog Ser 152:27–39. doi: 10.3354/meps152027 CrossRefGoogle Scholar
  18. Krishna ER, Kumar PS, Sujatha P (2011) Optimization of marine sponge isolated bacterium Bacillus subtilis (MTCC No. 10619) for the production of antimicrobial metabolites. Asian J Chem 23:2779–2781Google Scholar
  19. Long RA, Azam F (2001) Antagonistic interactions among marine pelagic bacteria. Appl Environ Microbiol 67:4975–4983. doi: 10.1128/AEM.67.11.4975-4983.2001 CrossRefGoogle Scholar
  20. Long RA, Rowley DC, Zamora E, Liu JY, Bartlett DH, Azam F (2005) Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol 71:8531–8536. doi: 10.1128/AEM.71.12.8531-8536.2005 CrossRefGoogle Scholar
  21. Martens T, Gram L, Grossart HP, Kessler D, Muller R, Simon M, Wenzel SC, Brinkhoff T (2007) Bacteria of the Roseobacter clade show potential for secondary metabolite production. Microb Ecol 54:31–42. doi: 10.1007/s00248-006-9161-6 CrossRefGoogle Scholar
  22. Martin MO (2002) Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol Biotechnol 4:467–477Google Scholar
  23. Morgan AD, MacLean RC, Hillesland KL, Velicer GJ (2010) Comparative analysis of Myxococcus predation on soil bacteria. Appl Environ Microbiol 76:6920–6927. doi: 10.1128/AEM.00414-10 CrossRefGoogle Scholar
  24. Na H, Kim OS, Yoon SH, Kim Y, Chun J (2011) Comparative approach to capture bacterial diversity of coastal waters. J Microbiol 49:729–740. doi: 10.1007/s12275-011-1205-z CrossRefGoogle Scholar
  25. Nair S, Simidu U (1987) Distribution and significance of heterotrophic marine-bacteria with antibacterial activity. Appl Environ Microbiol 53:2957–2962Google Scholar
  26. Nandy SK, Bapat PM, Venkatesh KV (2007) Sporulating bacteria prefers predation to cannibalism in mixed cultures. FEBS Lett 581:151–156. doi: 10.1016/j.febslet.2006.12.011 CrossRefGoogle Scholar
  27. Nithya C, Devi MG, Pandian SK (2011) A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in Gram-positive and Gram-negative species. Biofouling 27:519–528. doi: 10.1007/s00203-010-0612-6 CrossRefGoogle Scholar
  28. Parvathi A, Krishna K, Jose J, Joseph N, Nair S (2009) Biochemical and molecular characterization of Bacillus pumilus isolated from coastal environment in Cochin, India. Braz J Microbiol 40:269–275. doi: 10.1590/S1517-83822009000200012 CrossRefGoogle Scholar
  29. Pineiro SA, Sahaniuk GE, Romberg E, Williams HN (2004) Predation pattern and phylogenetic analysis of Bdellovibrionaceae from the Great Salt Lake, Utah. Curr Microbiol 48:113–117. doi: 10.1007/s00284-003-4136-z CrossRefGoogle Scholar
  30. Priest FG (1993) Systematics and ecology of Bacillus. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other Gram-positive bacteria: biochemistry, physiology, and molecular genetics. ASM Press, Washington, DC, pp 3–16Google Scholar
  31. Radjasa OK, Martens T, Grossart HP, Brinkhoff T, Sabdono A, Simon M (2007) Antagonistic activity of a marine bacterium Pseudoalteromonas luteoviolacea TAB 4.2 associated with coral Acrospora sp. J Biol Sci 7:239–246. ISSN: 1727-3048Google Scholar
  32. Reichenbach H (2006) The genus Lysobacter. In: Dworkin M, Falkow S (eds) The prokaryotes. Springer, New YorkGoogle Scholar
  33. Santavy DL, Colwell RR (1990) Comparison of bacterial communities associated with the caribbean sclerosponge Ceratoporella nicholsoni and ambient seawater. Mar Ecol Prog Ser 67:73–82. doi: 10.3354/meps067073 CrossRefGoogle Scholar
  34. Somvanshi V, Lang E, Schumann P, Pukall R, Kroppenstedt RM, Gangluy S, Stackebrandt E (2007) Leucobacter iarius sp. nov., in the family Microbacteriaceae. Int J Syst Evol Microbiol 57:682–686. doi: 10.1099/ijs.0.64683-0 CrossRefGoogle Scholar
  35. Suslow TV, Schroth MN, Isaka M (1982) Application of a rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology 72:917–918. doi: 10.1094/Phyto-77-917 CrossRefGoogle Scholar
  36. Tóth EM, Schumann P, Borsodi AK, Kéki Z, Kovács AL, Márialigeti K (2008) Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 58:976–981. doi: 10.1099/ijs.0.65324-0 CrossRefGoogle Scholar
  37. Williams HN, Pineiro S (2007) Ecology of the predatory Bdellovibrio and like organisms. In Jurkevitch E (ed) Predatory prokaryotes: biology, ecology and evolution. Springer, New York. ISBN:3540385770Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christiane Brack
    • 1
    Email author
  • Annett Mikolasch
    • 1
  • Rüdiger Pukall
    • 2
  • Peter Schumann
    • 2
  • Marion Köster
    • 3
  • Frieder Schauer
    • 1
  1. 1.Department of Applied Microbiology, Institute of MicrobiologyUniversity GreifswaldGreifswaldGermany
  2. 2.Leibniz Institute DSMZ—German Collection of Microorganisms and Cell CulturesBraunschweigGermany
  3. 3.Department of Microbial Ecology, Institute of MicrobiologyUniversity GreifswaldInsel HiddenseeGermany

Personalised recommendations