Advertisement

Marine Biology

, Volume 160, Issue 10, pp 2687–2697 | Cite as

Mesocosm and in situ observations of the burrowing shrimp Calocaris templemani (Decapoda: Thalassinidea) and its bioturbation activities in soft sediments of the Laurentian Trough

  • Jean-Marc GagnonEmail author
  • Luc Beaudin
  • Norman Silverberg
  • Anne Mauviel
Original Paper

Abstract

In vivo observations in laboratory mesocosms and aquaria, accompanied with in situ photographic surveys, have shown that the burrowing shrimp Calocaris templemani has a significant impact on bottom sediment dynamics and geochemistry in the St. Lawrence Estuary. This burrowing shrimp establishes and maintains complex semi-permanent burrows made up of several interconnected, ‘U-shaped’ galleries with generally four or more openings to the sediment surface. In the Estuary, at 345 m depth, Calocaris average density was estimated at 3.4 individuals m−2. Observed individual burrows reached a maximum volume of 0.54 L. C. templemani displaces this volume of mostly anoxic sediments from the subsurface layers (down to 15 cm) to the sediment surface, thereby obscuring some of the natural stratification patterns. With an estimated turnover rate of about 8 L m−2 year−1 of sediment, our calculations suggest that over a period of about 18.75 years, all the sediment to a depth of 15 cm will have been reworked by C. templemani alone.

Keywords

Horizontal Transport Vertical Shaft Burrow Density Lawrence Estuary Opening Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was made possible through financial support for postdoctoral research to the first author (Département d’océanographie, Université du Québec à Rimouski; Institut Maurice-Lamontagne, Fisheries and Oceans Canada, Mont-Joli), financial and logistical support to N. Silverberg by the Institut Maurice-Lamontagne, and a research grant (Programme d’actions structurantes, Université du Québec à Rimouski) to A. Mauviel. We are grateful for the assistance received from the crew of the research vessel Fogo Isle; this project would not have been possible without their hard work. We are very thankful for the support and/or constructive suggestions provided by Bjorn Sundby, Deborah Steele, and Bernard Chenard, Richard Larocque, Denis Guay, and Steve Trottier, to name only a few of the devoted staff of Institut Maurice-Lamontagne that contributed to the Benthocosm Project and this study. Finally, we gratefully acknowledge the many helpful comments and suggestions received from Drs. Eunice H. Pinn and R. James A. Atkinson and two anonymous reviewers; the completion of this paper has benefited substantially from their comments.

References

  1. Aller RC, Dodge RE (1974) Animal-sediment relations in a tropical lagoon, Discovery Bay, Jamaica. J Mar Res 32:209–232Google Scholar
  2. Anderson SJ, Atkinson RJA, Taylor AC (1991) Behaviour and respiratory adaptations of the mud-burrowing shrimp Calocaris macandreae Bell (Thalassinidea: Crustacea) to the burrow environment. Ophelia 34:143–156. doi: 10.1080/00785326.1991.10429702 CrossRefGoogle Scholar
  3. Astall CM, Taylor AC, Atkinson RJA (1997) Behavioural and physiological implications of a burrow-dwelling lifestyle for two species of upogebiid mud-shrimp (Crustacea: Thalassinidea). Estuar Coast Shelf Sci 44:155–168. doi: 10.1006/ecss.1996.0207 CrossRefGoogle Scholar
  4. Atkinson RJA, Chapman CJ (1984) Resin casting: a technique for investigating burrows in sublittoral sediments. Progr Underwater Sci 9:15–25Google Scholar
  5. Atkinson RJA, Taylor AC (2005) Aspects of the physiology, biology and ecology of thalassinidean shrimps in relation to their burrow environment. Oceanogr Mar Biol Annu Rev 43:173–210Google Scholar
  6. Bell T (1846) A history of the British Stalk-eyed Crustacea, 1844-1853. John Van Voorst 1, Paternoster Row, LondonGoogle Scholar
  7. Buchanan JB (1963) The biology of Calocaris macandreae (Crustacea, Thalassinidea). J Mar Biol Assoc UK 43:729–747. doi: 10.1017/S0025315400025650 CrossRefGoogle Scholar
  8. De Grave S, Pentcheff ND, Ahyong ST, Chan T-Y, Crandall KA, Dworschak PC, Felder DL, Feldmann RM, Fransen CHJM, Goulding LYD, Lemaitre R, Low MEY, Martin JW, Ng PKL, Schweitzer CE, Tan SH, Tshudy D, Wetzer R (2009) A classification of living and fossil genera of decapods crustaceans. Raffles Bull Zool Suppl 21:1–109Google Scholar
  9. De Vaugelas J (1985) Sediment reworking by Callianassid mud-shrimp in tropical lagoons: a review with perspectives. In: Gabrie C, Harmelin M (eds) Proceedings of the fifth international coral reef congress, Tahiti, vol 6, Miscellaneous Paper (B), pp 617–622Google Scholar
  10. De Young D, Hay AE (1987) Density current flow in Fortune Bay, Newfoundland. J Phys Oceanogr 17:1066–1070. doi: 10.1175/1520-0485(1987)017<1066:DCFIFB>2.0.CO;2 CrossRefGoogle Scholar
  11. Dworschak PC (1981) The pumping rates of the burrowing shrimp Upogebia pusilla (Petagna) (Decapoda: Thalassinidea). J Exp Mar Biol Ecol 52:25–35. doi: 10.1016/0022-0981(81)90168-4 CrossRefGoogle Scholar
  12. Dworschak PC (2000) Global diversity in the Thalassinidea (Decapoda). J Crustac Biol 20(special number 2):238–245Google Scholar
  13. Dworschak PC, Koller H, Abed-Navandi D (2006) Burrow structure, burrowing and feeding behaviour of Corallianassa longiventris and Pestarella tyrrhena (Crustacea, Thalassinidea, Callianassidae). Mar Biol 148:1369–1382. doi: 10.1007/s00227-005-0161-8 CrossRefGoogle Scholar
  14. Griffis RB, Suchanek TH (1991) A model of burrow architecture and trophic modes in Thalassinidean shrimp (Decapoda: Thalassinidea). Mar Ecol Prog Ser 79:171–183CrossRefGoogle Scholar
  15. Ingle RW, Christiansen ME (2004) Lobsters, mud shrimps and anomuran crabs: keys and notes for identification of the species. Synopses of the British Fauna, new series, No. 55Google Scholar
  16. Kristensen E, Kostka JE (2005) Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions. In: Kristensen E, Kostka JE, Haese R (eds) Interactions between macro- and microorganisms in marine sediments. American Geophysical Union, Washington, pp 125–158CrossRefGoogle Scholar
  17. McLellan HJ (1957) On the distinctiveness and origin of the slope water off the Scotia Shelf and its easterly flow south of the Grand Banks. J Fish Res Board Can 14:213–239CrossRefGoogle Scholar
  18. Meysman FJR, Middelburg JJ, Heip CHR (2006) Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol Evol 21:688–695. doi: 10.1016/j.tree.2006.08.002 CrossRefGoogle Scholar
  19. Nash RDM, Chapman CJ, Atkinson RJA, Morgan PJ (1984) Observations on the burrows and burrowing behaviour of Calocaris macandreae (Crustacea: Decapoda: Thalassinidea). J Zool 202:425–439. doi: 10.1111/j.1469-7998.1984.tb05093.x CrossRefGoogle Scholar
  20. Ott JA, Fuchs B, Fuchs R, Malasek A (1976) Observations on the biology of Callianassa stebbingi Borrodaille and Upogebia litoralis Risso and their effect upon the sediment. Senckenberg Marit 8:61–79Google Scholar
  21. Papaspyrou S, Gregersen T, Cox RP, Thessalou-Legaki M, Kristensen E (2005) Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea). Aquat Microb Ecol 38:181–190. doi: 10.3354/ame038181 CrossRefGoogle Scholar
  22. Pinn EH, Atkinson RJA (2010) Burrow development, nutrient fluxes, carnivory and caching behaviour by Calocaris macandreae (Crustacea:Decapoda:Thalassinidea). J Mar Biol Assoc UK 90(2):247–253. doi: 10.1017/S002531540999066X CrossRefGoogle Scholar
  23. Pinn EH, Robertson MR (1998) The effect of bioturbation on RoxAnn, a remote acoustic seabed discrimination system. J Mar Biol Assoc UK 78:707–715. doi: 10.1017/S0025315400044726 CrossRefGoogle Scholar
  24. Pinn EH, Atkinson RJA, Rogerson A (1998) The diet of two mud-shrimps, Calocaris macandreae and Upogebia stellata (Crustacea, Decapoda, Thalassinidea). Ophelia 48(3):211–223. doi: 10.1080/00785236.1998.10426967 CrossRefGoogle Scholar
  25. Posey MH (1986) Changes in a benthic community associated with dense beds of a burrowing deposit-feeder, Callianassa californensis. Mar Ecol Prog Ser 31:15–22CrossRefGoogle Scholar
  26. Robles R, Tudge CC, Dworschak PC, Poore GCB, Felder DL (2009) Molecular phylogeny of the Thalassinidea based on nuclear and mitochondrial genes. In: Martin JW, Crandall KA, Felder DL (eds) Decapod crustacean phylogenetics. CRC Press, Boca Raton, pp 309–326CrossRefGoogle Scholar
  27. Rowden AA, Jones MB (1993) Critical evaluation of sediment turnover estimates for Callianassidae (Decapoda: Thalassinidea). J Exp Mar Biol Ecol 173:265–272. doi: 10.1016/0022-0981(93)90057-U CrossRefGoogle Scholar
  28. Rowden AA, Jones MB, Morris AW (1998) The role of Callianassa subterranea (Montagu) (Thalassinidea) in sediment resuspension in the North Sea. Cont Shelf Res 18:1365–1380. doi: 10.1016/S0278-4343(98)00048-X CrossRefGoogle Scholar
  29. Shinn EA (1968) Burrowing in recent lime sediments of Florida and Bahamas. J Paleontol 42:879–894Google Scholar
  30. Silverberg N, Gagnon J-M, Lee K (1995) A benthic mesocosm facility for maintaining soft-bottom sediments. Neth J Sea Res 34:289–302. doi: 10.1016/0077-7579(95)90039-X CrossRefGoogle Scholar
  31. Squires HJ (1965) A new species of Calocaris (Crustacea: Decapoda, Thalassinidea) from the Northwest Atlantic. J Fish Res Board Can 22:1–11CrossRefGoogle Scholar
  32. Squires HJ (1990) Decapod Crustacea of the Atlantic Coast of Canada. Can Bull Fish Aquat Sci 221:338–342Google Scholar
  33. Stamhuis E, Reede-Dekker T, van Etten Y, de Wiljes JJ, Videler JJ (1996) Behaviour and time allocation of the burrowing shrimp Callianassa subterranea (Decapoda, Thalassinidea). J Exp Mar Biol Ecol 204:225–239. doi: 10.1016/0022-0981(96)02587-7 CrossRefGoogle Scholar
  34. Suchanek TH (1983) Control of seagrass communities and sediment distribution by Callianassa (Crustacea, Thalassinidea) bioturbation. J Mar Res 41:281–298. doi: 10.1357/002224083788520216 CrossRefGoogle Scholar
  35. Torres JJ, Gluck DL, Childress JJ (1977) Activities and physiological significant of the pleopods in the respiration of Callianassa califoniensis (Dana) (Crustacea: Thalassinidea). Biol Bull 152:134–146CrossRefGoogle Scholar
  36. Webb AP, Eyre BD (2004) Effect of natural populations of burrowing thalassinidean shrimp on sediment irrigation, benthic metabolism nutrient fluxes and denitrification. Mar Ecol Prog Ser 268:205–220. doi: 10.3354/meps268205 CrossRefGoogle Scholar
  37. Widdicombe S, Austen MC (2003) The effect of bioturbation by the burrowing shrimp Calocaris macandreae on a subtidal macrobenthic community: further evidence for the importance of function over identity. Vie Milieu 35:163–169Google Scholar
  38. Williams A (1984) Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Smithsonian Institute Press, Washington, DCGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jean-Marc Gagnon
    • 1
    Email author
  • Luc Beaudin
    • 2
  • Norman Silverberg
    • 3
  • Anne Mauviel
    • 4
  1. 1.Research and Collections DivisionCanadian Museum of NatureOttawaCanada
  2. 2.Institut Maurice-LamontagneMinistère des Pêches et des Océans CanadaMont-JoliCanada
  3. 3.Centro Interdisciplinario de Ciencias MarinasLa PazMexico
  4. 4.ADPEP 50Saint LoFrance

Personalised recommendations