Marine Biology

, Volume 160, Issue 10, pp 2647–2661 | Cite as

Phenotypic flexibility in response to environmental salinity in the euryhaline crab Neohelice granulata from the mudflat and the saltmarsh of a SW coastal lagoon

  • Silvina A. Pinoni
  • María Soledad Michiels
  • Alejandra A. López MañanesEmail author
Original Paper


This study constitutes a first attempt to investigate intraspecific differences in osmoregulatory capacity and digestive and metabolic responses at the biochemical level in relation to hyper- and hypo-regulation in a single species of estuarine crab inhabiting contrasting habitats within a same intertidal area. We compared hemolymph osmolality, key digestive enzymes, glycemia and energy reserves in Neohelice granulata (Dana in Proc Acad Nat Sci Philadelphia 5:247–254, 1851) from the mudflat and saltmarsh of Mar Chiquita coastal lagoon (37°32′/37°45′S-57°19′/57°26′W) under a wide range of salinities (6–60 psu). Individuals from both sites exhibited high and similar osmoregulatory capacity, but while in individuals from mudflat low and high salinities affected lipase activity in hepatopancreas and triglycerides in muscle, in crabs from saltmarsh, high salinities affected glycogen in anterior gills. Low salinity differentially affected free glucose in anterior gills. The results suggest the occurrence of intraspecific distinct digestive and metabolic adjustments in relation to osmoregulatory responses and habitat.


Triglyceride Content Digestive Enzyme Activity Free Glucose Biochemical Adaptation Salinity Acclimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by grants from the University of Mar del Plata, Argentina (EXA EXA601/12), and from the Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) (PIP OO21/11). MSM has a doctoral fellowship from CONICET.


  1. Alberti J, Escapa M, Daleo P, Iribarne O, Silliman B, Bertness M (2007) Local and geographic variation in grazing intensity by herbivorous crabs in SW Atlantic salt marshes. Mar Ecol Prog Ser 349:235–243CrossRefGoogle Scholar
  2. Anger K (2001) The Biology of decapod crustacean larvae. Crustacean issues, vol 14. AA Balkema Publishers, Lisse, p 420Google Scholar
  3. Anger K, Spivak E, Luppi T, Bas C, Ismael D (2008) Larval salinity tolerance of the South American salt-marsh crab, Neohelice (Chasmagnathus) granulata: physiological constraints to estuarine retention, export and reimmigration. Helgol Mar Res 62:93–102CrossRefGoogle Scholar
  4. Artillo R, Pinoni SA, Asaro A, López Mañanes AA (2008) Glycogen storage sites in Chasmagnathus granulatus upon hyperregulation: differential postingesta response. Biocell 32:85Google Scholar
  5. Asaro A, del Valle JC, López Mañanes A (2011) Amylase, maltase and sucrase activities in hepatopancreas of the euryhaline crab Neohelice granulata (Decapoda: Brachyura: Varunidae): partial characterization and response to low environmental salinity. Sci Mar 75:517–524CrossRefGoogle Scholar
  6. Asaro A, del Valle JC, López Mañanes AA (2012) Sucrase activity in the hepatopancreas of the euryhaline crab Cyrtograpsus angulatus: response to environmental salinity. Biocell 36:A33Google Scholar
  7. Athamena A, Brichon G, Trajkovic-Bodennec S, Péqueux A, Chapelle S, Bodennec J, Zwingelstein G (2011) Salinity regulates N-methylation of phosphatidylethanolamine in euryhaline crustaceans hepatopancreas and exchange of newly-formed phosphatidylcholine with hemolymph. J Comp Physiol B 181:731–740CrossRefGoogle Scholar
  8. Bianchini A, Machado Lauer M, Nery L, Pinto Colares E, Monserrat JM, dos Santos Filho EA (2008) Biochemical and physiological adaptations in the estuarine crab Neohelice granulata during salinity acclimation. Comp Biochem Physiol A 151:423–436CrossRefGoogle Scholar
  9. Biesiot P, Capuzzo JM (1990) Changes in the digestive enzyme activities during early development of the American lobster Homarus americanus Milne Edwards. J Exp Mar Biol Ecol 136:107–122CrossRefGoogle Scholar
  10. Bortolus A, Iribarne O (1999) Effects of the burrowing crab Chasmagnathus granulata on a Spartina salt marsh. Mar Ecol Prog Ser 178:79–88CrossRefGoogle Scholar
  11. Bortolus A, Schwindt E, Iribarne O (2002) Positive plant-animal interactions in the high marsh of an Argentinean coastal lagoon. Ecology 83:733–742Google Scholar
  12. Boschi EE (1964) Los crustáceos decápodos brachyura del litoral bonaerense (R. Argentina). Bol Inst Biol Mar (Mar del Plata) 6:1–99Google Scholar
  13. Botto JL, Irigoyen HR (1979) Bioecología del cangrejal I. Contribución al conocimiento del cangrejo del estuario Chasmagnathus granulata Dana (Crustacea, Decapoda Grapsidae) en la desembocadura del río Salado, provincia de Buenos Aires. Seminario de biología Bentónica y Sedimentación de la Plataforma continental del Atlántico Sur. Montevideo, UNESCO, pp 161–169Google Scholar
  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  15. Buckup L, Dutra B, Ribarcki F, Fernandes F, Noro C, Oliveira G, Vinagre A (2008) Seasonal variations in the biochemical composition of the crayfish Parastacus defossus (Crustacea, Decapada) in its natural environment. Comp Biochem Physiol A 149:59–67CrossRefGoogle Scholar
  16. Charmantier G, Anger K (2011) Ontogeny of osmoregulatory patterns in the South American shrimp Macrobrachium amazonicum: loss of hypo-regulation in a land-locked population indicates phylogenetic separation from estuarine ancestors. J Exp Mar Biol Ecol 396:89–98CrossRefGoogle Scholar
  17. Charmantier G, Bouaricha N, Charmantier-Daures M, Thuet P, Trilles JP (1989) Salinity tolerance and osmoregulatory capacity as indicators of the physiological state of peneid shrimps. Eur Aquat Soc Spec Publ 10:65–66Google Scholar
  18. Daleo P, Iribarne O (2009) The burrowing crab Neohelice granulata affects the root strategies of the cordgrass Spartina densiflora in SW Atlantic salt marshes. J Exp Mar Biol Ecol 373:66–71CrossRefGoogle Scholar
  19. Dana JD (1851) Crustacea Grapsoidea, (Cyclometopa, Edwardsii): Conspectus Crustacearum quae in Orbis Terrarum circumnavigatione, Carolo Wilkes e classe Reipublicae Foederatae Duce, lexit et descriptsit J. D. Dana. Proc Acad Nat Sci Philadelphia 5: 247–254 (printed in 1852)Google Scholar
  20. del Valle JC, López Mañanes AA (2008) Digestive strategies in the South American subterranean rodent Ctenomys talarum. Comp Biochem Physiol A 150:387–394CrossRefGoogle Scholar
  21. del Valle JC, López Mañanes AA (2011) Digestive flexibility in females of the subterranean rodent Ctenomys talarum in their natural habitat. J Exp Zool A 315:41–148Google Scholar
  22. del Valle JC, Busch C, López Mañanes AA (2006) Phenotypic plasticity in response to low quality diet in the South American omnivorous rodent Akodon azarae (Rodentia: Sigmodontinae). Comp Biochem Physiol A 145:397–405CrossRefGoogle Scholar
  23. del Valle JC, Panzeri AM, López Mañanes AA (2012). Efecto de dopamina sobre las reservas de glucógeno en branquias y músculo del cangrejo eurihalino Cyrtograpsus angulatus. Abstracts XIV Jornadas de la Sociedad Argentina de Biología—Primer Encuentro Rioplatense de Biología, Bs As: 29Google Scholar
  24. Dima JM, De Vido NA, Leal GA, Barón PJ (2009) Fluctuations in the biochemical composition of the Patagonian stone crab Platyxanthus patagonicus A. Milne Edwards, 1879 (Platyxanthidae: Brachyura) throughout its reproductive cycle. Sci Mar 73:423–430CrossRefGoogle Scholar
  25. Drach P, Tchernigovtzeff C (1967) Sur la méthode de détermination des stades d’intermue et son application générale aux Crustacés. Vie Milieu 18:595–607Google Scholar
  26. Fanjul E, Grela MA, Canepuccia A, Iribarne O (2008) The Southwest Atlantic intertidal burrowing crab Neohelice granulata modifies nutrient loads of phreatic waters entering coastal area. Estuar Coast Shelf Sci 79:300–306CrossRefGoogle Scholar
  27. Freire CA, Onken H, McNamara JC (2008) A structure function analysis of ion transport in crustacean gills and excretory organs. Comp Biochem Physiol A 151:272–304CrossRefGoogle Scholar
  28. Genovese G, Luchetti CG, Luquet CM (2004) Na+/K+-ATPase activity and gill ultrastructure in the hyper-hypo-regulating crab Chasmagnathus granulatus acclimated to dilute, normal and concentrated seawater. Mar Biol 144:111–118CrossRefGoogle Scholar
  29. González S, Pinoni S, López Mañanes A (2012) ATPases activities in gills of crab Neohelice granulata from contrasting habitats of Mar Chiquita coastal lagoon: differential response to hyporegulation. Biocell 36:A32Google Scholar
  30. Iribarne O, Bortolus A, Botto F (1997) Between-habitats differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Mar Ecol Prog Ser 155:132–145CrossRefGoogle Scholar
  31. Iribarne O, Martinetto P, Schwindt E, Botto F, Bortolus A, García Borboroglu P (2003) Evidences of habitat displacement between two common soft-bottom SW Atlantic intertidal crabs. J Exp Mar Biol Ecol 296:167–182CrossRefGoogle Scholar
  32. Jahn MP, Cavagni GM, Kaiser D, Kucharski LC (2006) Osmotic effect of choline and glycine betaine on the gills and hepatopancreas of the Chasmagnathus granulata crab submitted to hyperosmotic stress. J Exp Mar Biol Ecol 334:1–9CrossRefGoogle Scholar
  33. Kelly SA, Panhuis TM, Stoehr AM (2012) Phenotypic plasticity: molecular mechanisms and adaptive significance. Comp Physiol 2:1417–1439Google Scholar
  34. Kirschner LB (2004) The mechanism of sodium chloride uptake in hyperregulating aquatic animals. J Exp Biol 207:1439–1452CrossRefGoogle Scholar
  35. Kucharski LC, Schein V, Capp E, Da Silva RSM (2002) In vitro insulin stimulatory effect on glucose uptake and glycogen synthesis in the gills of the estuarine crab Chasmagnathus granulata. Gen Comp Endocrinol 125:256–263CrossRefGoogle Scholar
  36. Li E, Chen L, Zeng C, Yu N, Xiong Z, Chen X, Qin JG (2008) Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquaculture 274:80–86CrossRefGoogle Scholar
  37. Lignot JH, Spanings-Pierrot C, Charmantier G (2000) Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans. Aquaculture 191:209–245CrossRefGoogle Scholar
  38. Ljungström M, Norberg L, Olaisson H, Wernstedt C, Vega FV, Arvidson G, Mårdh S (1984) Characterization of proton-transporting membranes from resting pig gastric mucosa. Biochim Biophys Acta 769:209–219CrossRefGoogle Scholar
  39. López Mañanes AA, Magnoni LJ, Goldemberg AL (2000) Branchial carbonic anhydrase (CA) of gills of Chasmagnathus granulata (Crustacea Decapoda). Comp Biochem Physiol B 127:85–95CrossRefGoogle Scholar
  40. Lorenzon S, Edomi P, Giulianini PG, Mettulio R, Ferrero EA (2005) Role of biogenic amines and cHH in the crustacean hyperglycemic stress response. J Exp Biol 208:3341–3347CrossRefGoogle Scholar
  41. Lucu C, Towle DW (2003) Na+ + K+-ATPase in gills of aquatic crustacea. Comp Biochem Physiol A 135:195–214CrossRefGoogle Scholar
  42. Luppi T, Bas C, Méndez Casariego A, Albano M, Lancia J, Kittlein M, Rosenthal A, Farías N, Spivak E, Iribarne O (2012) The influence of habitat, season and tidal regime in the activity of the intertidal crab Neohelice (=Chasmagnathus) granulata. Helgol Mar Res. doi: 10.1007/s10152-012-0300-9 Google Scholar
  43. Luquet CM, Ford P, Rodriguez EM, Ansaldo M, Stella V (1992) Ionic regulation patterns in two species of estuarine crabs. Commun Biol 10:315–325Google Scholar
  44. Luquet CM, Genovese G, Rosa GA, Pellerano GN (2002a) Ultrastructural changes in the gill epithelium of the crab Chasmagnathus granulatus (Decapoda: Grapsidae) in diluted and concentrated seawater. Mar Biol 141:753–760CrossRefGoogle Scholar
  45. Luquet CM, Postel U, Halperin J, Urcola MR, Marques R, Siebers D (2002b) Transepithelial potential differences and Na+ flux in isolated perfused gills of the crab Chasmagnathus granulatus (Grapsidae) acclimated to hyper- and hypo-salinity. J Exp Biol 205:71–77Google Scholar
  46. Luquet CM, Weihrauch D, Senek M, Towle DW (2005) Induction of branchial ion transporter mRNA expression during acclimation to salinity change in the euryhaline crab Chasmagnathus granulatus. J Exp Biol 208:3627–3636CrossRefGoogle Scholar
  47. Luvizotto-Santos R, Lee J, Branco Z, Bianchini A, Nery L (2003) Lipids as energy source during salinity acclimation in the euryhaline crab Chasmagnathus granulata Dana, 1851 (Crustacea-Grapsidae). J Exp Zool A 295:200–205Google Scholar
  48. Markweg H, Lang MS, Wagner F (1995) Decanoic acid inhibition of lipase from Acetinobacter sp. OPA 55. Enzym Microb Technol 17:512–516CrossRefGoogle Scholar
  49. Martins TL, Chittó ALF, Rossetti CR, Brondani CK, Kuchar-ski LC, Da Silva RSM (2011) Effects of hypo- or hyperosmotic stress on lipid synthesis and gluconeogenic activity in tissues of the crab Neohelice granulata. Comp Biochem Physiol A 158:400–405CrossRefGoogle Scholar
  50. McGaw IJ (2006) Feeding and digestion in low salinity in an osmoconforming crab, Cancer gracilis I. Cardiovascular and respiratory responses. J Exp Biol 209:3766–3776CrossRefGoogle Scholar
  51. McNamara JC, Faria SC (2012) Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. J Comp Physiol B 182:997–1014CrossRefGoogle Scholar
  52. Méndez-Casariego A, Luppi T, Iribarne O, Daleo P (2011) Increase of organic matter transport between marshes and tidal flats by the burrowing crab Neohelice (Chasmagnathus) granulata Dana in SW Atlantic salt marshes. J Exp Mar Biol Ecol 401:110–117CrossRefGoogle Scholar
  53. Michiels MS (2010) Actividad de lipasa en hepatopáncreas del cangrejo eurihalino Neohelice granulata: modulación en relación a estados fisiológicos diferenciales. Degree Thesis. FCEyN, UNMDP. p 27Google Scholar
  54. Michiels MS, Pinoni SA, del Valle JC, López Mañanes AA (2011) Lipase activity in hepatopancreas of the euryhaline crab Neohelice granulata: response in relation to osmoregulatory status. Biocell 35:163Google Scholar
  55. Michiels MS, del Valle JC, López Mañanes AA (2013) Effect of environmental salinity and dopamine injections on key digestive enzymes in hepatopancreas of the euryhaline crab Cyrtograpsus angulatus (Decapoda: Brachyura: Varunidae). Sci Mar 77:129–136CrossRefGoogle Scholar
  56. Miller GL (1959) Use of dinitrosalicylic acid regent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  57. Normant M, Król M, Jakubowska M (2012) Effect of salinity on the physiology and bioenergetics of adult Chinese mitten crabs Eriocheir sinensis. J Exp Mar Biol Ecol 416–417:215–220CrossRefGoogle Scholar
  58. Novo MS, Miranda RB, Bianchini A (2005) Sexual and seasonal variations in osmoregulation and ionoregulation in the estuarine crab Chasmagnathus granulatus (Crustacea, Decapoda). J Exp Mar Biol Ecol 323:118–137CrossRefGoogle Scholar
  59. Obi I, Kenneth E, Sterling M, Ahearn GA (2011) Transepithelial d-glucose and d-fructose transport across the American lobster, Homarus americanus, intestine. J Exp Biol 214:2337–2344CrossRefGoogle Scholar
  60. Péqueux A (1995) Osmotic regulation in crustaceans. J Crustac Biol 15:1–60CrossRefGoogle Scholar
  61. Perera E, Rodríguez-Viera L, Rodríguez-Casariego J, Fraga I, Carrillo O, Martínez-Rodríguez G, Mancera JM (2012) Dietary protein quality differentially regulates trypsin enzymes at the secretion and transcription level in Panulirus argus by distinct signaling pathways. J Exp Biol 215:853–862CrossRefGoogle Scholar
  62. Pfenning DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467CrossRefGoogle Scholar
  63. Piersman T, Drent J (2003) Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol 18:228–233CrossRefGoogle Scholar
  64. Pinoni SA (2009) Mecanismos de mantenimiento del medio interno en respuesta a estrés environmental en crustáceos decápodos de interés regional. PhD Thesis. Universidad Nacional de Mar del Plata. Mar del Plata, ArgentinaGoogle Scholar
  65. Pinoni SA, López Mañanes AA (2004) Alkaline phosphatase activity sensitive to environmental salinity and dopamine in muscle of the euryhaline crab Cyrtograpsus angulatus. J Exp Mar Biol Ecol 307:35–46CrossRefGoogle Scholar
  66. Pinoni SA, López Mañanes AA (2008) Partial characterization and response under hyperregulating conditions of Na+/K+-ATPase and levamisole-sensitive alkaline phosphatase activities in chela muscle of the euryhaline crab Cyrtograpsus angulatus. Sci Mar 72:15–24Google Scholar
  67. Pinoni SA, López Mañanes AA (2009) Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: differential response to environmental salinity. J Exp Mar Biol Ecol 372:91–97CrossRefGoogle Scholar
  68. Pinoni SA, Goldemberg AL, López Mañanes AA (2005) Alkaline phosphatases activities in muscle of the euryhaline crab Chasmagnathus granulatus: response to environmental salinity. J Exp Mar Biol Ecol 326:217–226CrossRefGoogle Scholar
  69. Pinoni SA, Iribarne O, López Mañanes AA (2011) Between-habitat comparison of digestive enzymes activities and energy reserves in the SW Atlantic euryhaline burrowing crab Neohelice granulata. Comp Biochem Physiol A 158:552–559CrossRefGoogle Scholar
  70. Pinto Rodrigues A, Correia Oliveira P, Guilhermino L, Guimaraes L (2012) Effects of salinity stress on neurotransmission, energy metabolism, and anti-oxidant biomarkers of Carcinus maenas from two estuaries of the NW Iberian Peninsula. Mar Biol 159:2061–2074CrossRefGoogle Scholar
  71. Resch-Sedlmeier G, Sedlmeier D (1999) Release of digestive enzymes from the crustacean hepatopancreas: effect of vertebrate gastrointestinal hormones. Comp Biochem Physiol B 1:187–192CrossRefGoogle Scholar
  72. Romano N, Zeng C (2012) Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture 334–337:12–23CrossRefGoogle Scholar
  73. Sánchez-Paz A, García-Carreño F, Muhlia-Almazan A, Peregrino-Uriarte A, Hernández-López J, Yepiz-Plascencia G (2006) Usage of energy reserves in crustaceans during starvation: status and future directions. Insect Biochem Mol Biol 36:241–249CrossRefGoogle Scholar
  74. Sánchez-Paz A, García-Carreño F, Hernández-López J, Muhlia-Almazán A, Yepiz-Plascencia G (2007) Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). J Exp Mar Biol Ecol 340:184–193CrossRefGoogle Scholar
  75. Santos E, Nery L, Keller R, Gonçalves A (1997) Evidence for the involvement of the crustacean hyperglycemic hormone in the regulation of lipid metabolism. Physiol Zool 70:415–420CrossRefGoogle Scholar
  76. Schleich CE, Goldemberg AL, López Mañanes AA (2001) Salinity dependent Na+/K+ ATPase activity in gills of euryhaline crab Chasmagnathus granulatus. Gen Physiol Biophys 20:255–256Google Scholar
  77. Schmitt A, Santos E (1993) Lipid and carbohydrate metabolism of the intertidal crab Chasmagnathus granulata Dana 1851 (Crustacea–Decapoda) during emersion. Comp Biochem Physiol A 106:329–336CrossRefGoogle Scholar
  78. Shinji J, Kang B, Okutsu T, Banzai K, Ohira T, Tsutsui N, Wilder M (2012) Changes in crustacean hyperglycemic hormones in Pacific whiteleg shrimp Litopenaeus vannamei subjected to air-exposure and low-salinity stresses. Fish Sci 78:833–840CrossRefGoogle Scholar
  79. Sjoboen AD, Dunbar SG, Boskovic DS (2010) Temporal fluctuations of fatty acids in Pachygrapsus crassipes from Southern California. J Crustac Biol 30:257–265CrossRefGoogle Scholar
  80. Spivak E (1997) Cangrejos estuariales del Atlántico sudoccidental (25°–41°S) (Crustacea: Decapoda: Brachyura). Invest Mar Valparaíso 25:105–120Google Scholar
  81. Spivak ED (2010) The crab Neohelice (=Chasmagnathus) granulata: an emergent animal model from emergent countries. Helgol Mar Res 64:149–154CrossRefGoogle Scholar
  82. Spivak E, Anger K, Luppi T, Bas C, Ismael D (1994) Distribution and habitat preferences of two grapsid crab species in Mar Chiquita lagoon (Pcia. Bs As. Argentina). Helgol Meeresunters 48:59–78CrossRefGoogle Scholar
  83. Spivak E, Silva PV, Luppi T (2012) Habitat related variation in reproductive traits among intertidal crabs from the southwestern Atlantic. J Crustac Biol 32:57–66CrossRefGoogle Scholar
  84. Verri T, Mandal A, Zilli L, Bossa D, Mandal PK, Ingrosso L, Zonno V, Viella S, Ahearn GA, Storelli C (2001) d-Glucose transport in decapod crustacean hepatopancreas. Comp Biochem Physiol A 130:585–606Google Scholar
  85. Wright SH, Ahearn GA (1997) Nutrient absorption in invertebrates. In: Dantzler WH (ed) Handbook of physiology, section 13: comparative physiology. Oxford University Press, New York, pp 1137–1206Google Scholar
  86. Zar JH (1999) Biostatistical analysis. Prentice-Hall, Inc., New Jersey, p 662Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Silvina A. Pinoni
    • 1
  • María Soledad Michiels
    • 1
  • Alejandra A. López Mañanes
    • 1
    Email author
  1. 1.Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de Mar del PlataMar del PlataArgentina

Personalised recommendations